КРАТКОСРОЧНЫЙ ПРОГНОЗ ВЫРАБОТКИ ЭЛЕКТРОЭНЕРГИИ ФОТОЭЛЕКТРИЧЕСКИМИ ЭЛЕКТРОСТАНЦИЯМИ ПУТЕМ СРАВНЕНИЯ МОДЕЛЕЙ LSTM И MLP
DOI:
https://doi.org/10.32014/2024.2518-1726.300Ключевые слова:
солнечная энергетика, LSTM, MLP, краткосрочное прогнозирование, машинное обучениеАннотация
В современном мире эффективное управление электрическими сетями невозможно без достижения энергетического баланса между производством и потреблением электроэнергии. Стабильность работы электросетей напрямую зависит от способности операторов сети точно прогнозировать производство энергии, особенно когда речь идет о фотоэлектрических установках. Эти источники энергии, активно интегрируемые в электрические сети, подвержены влиянию множества факторов, в том числе и изменчивых погодных условий, что делает задачу прогнозирования особенно сложной. В рамках данного исследования была предпринята попытка повысить точность прогнозирования выходной мощности фотоэлектрической системы мощностью 20 кВт, собрав и анализировав данные о погодных условиях и производстве энергии за типичный год, охватывающий все четыре сезона. Особое внимание было уделено оценке двух методов машинного обучения: долгосрочной памяти (LSTM) и многослойного персептрона (MLP), которые были выбраны из-за их потенциала в обработке и анализе временных рядов данных. Результаты исследования демонстрируют высокую эффективность обоих методов в прогнозировании выходной мощности фотоэлектрических систем, что открывает новые возможности для улучшения управления электрическими сетями. Использование LSTM и MLP позволяет не только точно прогнозировать производство энергии, но и способствует оптимизации загрузки сети, минимизации потерь и повышению общей эффективности электроэнергетической системы. Важно отметить, что успех применения этих моделей зависит от качества и объема собранных данных, а также от тщательности подготовки данных к анализу. Исследование подчеркивает значимость интеграции передовых технологий машинного обучения в сферу управления энергетическими системами, предлагая практические рекомендации для энергетических компаний и операторов электросетей.