STEFAN PROBLEM IN ELLIPSOIDAL COORDINATES

Авторы

  • S.N. Kharin Institute of Mathematics of the National Academy of Sciences of Kazakhstan, Kazakh-British Technical University
  • S.A. Kassabek Institute of Mathematics of the National Academy of Sciences of Kazakhstan, Suleyman Demirel University
  • D. Salybek Suleyman Demirel UniversitY
  • T. Ashymov Suleyman Demirel UniversitY

DOI:

https://doi.org/10.32014/2018.2518-1726.3

Ключевые слова:

квазистационарная модель, проблема Стефана, интегральный метод.

Аннотация

В настоящей работе представлена квазистационарная задача Стефана в симметричных
электрических контактах. Метод решения может быть получен из предположения, что идентичность
эквипотенциальных и изотермических поверхностей в контактах, которая правильна для стационарного поля в
линейном случае также и для нелинейного случая. Идея состоит в том, чтобы преобразовать систему задач,
заданную в цилиндрических координатах, в эллипсоидальные координаты. Получено аналитическое решение
стационарной задачи Стефана. На основании этого решения был построен профиль температуры приближенному
решению тепловой задачи с Джоулевым нагревом в эллипсоидальных координатах.

Загрузки

Опубликован

2018-09-30

Как цитировать

S.N. Kharin, S.A. Kassabek, D. Salybek, & T. Ashymov. (2018). STEFAN PROBLEM IN ELLIPSOIDAL COORDINATES. Известия НАН РК. Серия физико-математическая, (5), 19–24. https://doi.org/10.32014/2018.2518-1726.3