SOLVABILITY OF BOUNDARY VALUE PROBLEMS WITH NON-LOCAL CONDITIONS FOR MULTIDIMENSIONAL HYPERBOLIC EQUATIONS

Авторы

  • B.D. Koshanov Institute of Mathematics and Mathematical modeling, Almaty, Kazakhstan
  • G.D. Koshanova Yasavi International Kazakh-Turkish University, Turkistan, Kazakhstan
  • G.E. Azimkhan Abai Kazakh National Pedagogical University, Almaty, Kazakhstan
  • R.U. Segizbayeva Civil Aviation Academy, Almaty, Kazakhstan

Ключевые слова:

hyperbolic equation, boundary value problems, regular solutions, existence, uniqueness.

Аннотация

In this paper, we study the solvability of new nonlocal boundary value problems for hyperbolic equations in a multidimensional bounded domain. For the problem under study, the existence and uniqueness theorems of regular solutions are proved.

Загрузки

Опубликован

2020-04-07

Как цитировать

Koshanov, B., Koshanova, G., Azimkhan, G., & Segizbayeva, R. (2020). SOLVABILITY OF BOUNDARY VALUE PROBLEMS WITH NON-LOCAL CONDITIONS FOR MULTIDIMENSIONAL HYPERBOLIC EQUATIONS. Известия НАН РК. Серия физико-математическая, (2), 103–111. извлечено от https://journals.nauka-nanrk.kz/physics-mathematics/article/view/412