SPECTRAL DECOMPOSITION OF A FIRST ORDER FUNCTIONAL DIFFERENTIAL OPERATOR

Авторы

  • A.Sh. Shaldanbayev Silkway International University, Shymkent, Kazakhstan
  • M.B. Ivanova South Kazakhstan medical Academy, Shymkent, Kazakhstan
  • A.N.Urmatova South Kazakhstan State University M.O.Auezov, Shymkent, Kazakhstan
  • A.A. Shaldanbayeva Regional social-innovative University, Shymkent, Kazakhstan

Ключевые слова:

equation with deviating argument, completeness, basis property, Volterra property, Sturm-Liouville operator, Riesz basis.

Аннотация

In this paper we study spectral properties of a boundary value problem of a first-order differential
equation with constant coefficients and a deviating argument. By spectral properties we mean completeness and basis
property of the system of eigenfunctions and associated functions of the boundary value problem, as well as the
Volterra property.

Загрузки

Опубликован

2019-12-12

Как цитировать

A.Sh. Shaldanbayev, M.B. Ivanova, A.N.Urmatova, & A.A. Shaldanbayeva. (2019). SPECTRAL DECOMPOSITION OF A FIRST ORDER FUNCTIONAL DIFFERENTIAL OPERATOR. Известия НАН РК. Серия физика и информационные технологии., (6), 90–105. извлечено от https://journals.nauka-nanrk.kz/physics-mathematics/article/view/1696