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3D MODELING OF HEAT TRANSFER PROCESSES IN THE
COMBUSTION CHAMBER BOILER OF THERMAL POWER PLANTS

Abstract. In the present work, a computer-aided 3D modeling method was used to conduct a comprehensive
study of heat and mass transfer processes in turbulent flows of high-temperature reactive media in real geometry.
Numerical computations of the thermal processes and aerodynamic characteristics of the flow were made for the
combustion chamber of the BKZ-75 boiler at Shakhtinskaya thermal power plant for combustion of high-ash fuel.
Using the methods of computer 3D-modeling, we took into account a great number of phenomena and factors
affecting the real technological processes in the combustion chambers of industrial facilities. The aerodynamic
picture of the studied combustion chamber was obtained, the temperature fields and energy distributions released due
to chemical reactions were constructed, and the values of radiation heat fluxes to the main heat-receiving surfaces of
the combustion chamber were determined. The results of numerical calculations can be used to design new and
modernize existing combustion chambers of industrial boilers working on solid fuel, as they are based on the most
advanced physical and mathematical models in this area. The use of modern technologies for 3D numerical
computations of solid fuel combustion in the combustion chambers of thermal power plants, will allow us to describe
in detail the fields of velocity, temperature, pressure and concentrations of all combustion products and, above all,
harmful substances and other characteristics of the coal combustion process throughout the combustion space and at
the outlet of the combustion chamber.

Key words. Combustion, modelling, thermal power plant, high ash coal.

Introduction

The study of combustion at the level of mathematical modeling is an intermediate link between research
conducted at the level of engineering practice and fundamental science [1-3]. It becomes necessary to create new
models that will allow us to make more accurate calculations of the fields of velocity, temperature and concentration
of the main components of fuel and combustion products in systems such as combustion chambers, various
combustion devices, etc. Limitations of theoretical methods and complexity of experimental investigations
predetermined a significant role of numerical methods and numerical computations in the study of complex flows of
reacting liquids [4-8]. Though, in most cases, mathematical studies are carried out in one- and two-dimensional
approximations, and only in rare cases three-dimensional models are used [9-12], moreover, numerical computations
are made with constraints in the computational domain. The first results of three-dimensional modeling of heat and
mass transfer processes in the combustion chambers of real power facilities of the Republic of Kazakhstan are
presented in [13-16]. So the study of the heat transfer processes in furnaces becomes particularly important.

Lately, whole complexes of programs are created, allowing to carry out numerical studies of the most
complex phenomena, which include processes of convective heat and mass transfer in high-temperature
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and chemically reactive flows in the presence of fast-flowing physical and chemical transformations of
substances. For this purpose, commercial packages of universal programs that use the latest achievements
of computer technology, mathematics, combustion, heat and mass transfer have been developed and
applied [17-19].

Modeling of coal combustion

In the present work, physical-mathematical and chemical models were used to study heat and mass
transfer in high-temperature environments [20-22]. These models include a system of three-dimensional
Navies - Stokes equations and heat and mass transfer equations, considering the source terms determined
by the chemical kinetics of the process, nonlinear effects of thermal radiation, interfacial interaction, and
multi-stage chemical reactions. The basic equations used to solve the problem are:

The equation for turbulent kinetic energy dissipation &:

2

d(ps) _  O(puje) 3 [wesr B¢ £E.p_ &
at ox; + Oxj| o 0xj + C‘S'l * k *P CS'Z * k *P (1)

where pe is transformation of kinetic energy pulsations into internal energy (dissipation); oy, 0. are
turbulent Prandtl numbers.
The basic equations used in this work can be written in generalized form as follows:

d(pg) _ _ d(pu, 9) _ 0(pu, @) _ 0(pus @) + [ 6¢
at dx, dx, dxs dx, ¢ax1
0x, [ ¢6x2 0x3 [F¢ axg] + S¢ (2)

where ¢ is a transport variable; Sy is the source term determined by the chemical kinetics of the process,
nonlinear effects of thermal radiation, interphase interaction and multi-stage chemical reactions. The
above system of equations is solved numerically using the control volume method described in detail in
[21-24] and used in numerical computations of high-ash coal combustion in Kazakhstan’s thermal power
plants.

To solve the problem, the mathematical model should include specific initial and boundary conditions
for desired functions (velocity, temperature, concentration of the mixture components, etc.) corresponding
to the geometry of the selected combustion chamber and the real technological process of fuel combustion
at TPPs.

Initial conditions:u = 0, v= 0, w = 0, P = 0,at t = 0.

The boundary conditions are set on the free surfaces, which are the burners, the exit from the furnace
chamber of the boiler and the plane of symmetry.

Input: u; are speed values, cg is the initial concentration of each component, the enthalpy h is

determined by the input flow temperature from the following relation:

oh
Cp =—
P =57 )
where T is the temperature at the inlet (experiment or calculation).
ou, oh Ocy — ,
Output: —+ =0, =0, =0 are derivatives of velocity, enthalpy and
x[ normalA xl normal4 xl normal4

concentration of components normal to the output plane.




ISSN 1991-346X 6. 2019

In the plane of symmetry: u;|,ormais = 0 is the velocity normal to the plane of symmetry,

o

normalS x[

oy

=0, are the derivatives of velocity and enthalpy normal to the plane of

4 normalS

symmetry, —| =0 is the derivative of the enthalpy tangential to the plane of symmetry,

taS

i

oc
£ =0 is the derivative of component concentrations normal to the plane of symmetry.

U InormalS

ou, ) )
— i =0 1is the correction for

On the solid surface: u, =0,
boundary

normalB =0 ’ ui ta =0 ’ ap

B

i

oc
pressure on the border of the solid surface, -

i

normalB

=0.

normalB

The boundary conditions for the temperature on the wall are determined by the convective heat
flux gy, = @(Tsteam — Tsury)- In case of variable temperature of the wall of the combustion chamber, the
heat flux can be calculated by the formula:

q = ATpg — Tsufr) + ClZ(TIf'tG - T.S“Lurf) “4)

convection radiation

where Ci; = &0, T pg is the temperature of the flue gases, Tgy,r is the surface temperature of the
chamber wall, « is the coefficient of heat transfer by convection, W/(m’K), &, is the emissivity wall, o is
the Boltzmann constant, W/(m*K*).

In this work the radiant heat exchange was calculated using the flux model described in [25-26]. The
modeling method was developed by Lockwood, Shah [25] and De Marco, Lockwood [26].

Results of numerical computations

As the object of research has been chosen the boiler BKZ-75 (Fig. 2) located at Shakhtinskaya TPP
(Kazakhstan) [27-30]. For numerical simulation, the entire computational domain is divided by a
difference grid into discrete points or volumes (Fig. 2b). The resulting finite-difference grid has the
resolution of 110x61x150 or 1 006 500 control volumes [31-36].

This paper presents the results of calculations give changes in the velocity and radiant vectors in the
sections of the combustion chamber and the temperature profile shown in Figs. 3-5.

Fig. 3 illustrations the three-dimensional distribution of the full velocity vector in the volume of the
combustion chamber. An analysis of Fig. 3a shows that the flow of the air mixture with combustion
products has a vortex character in the region of the burners and in the lower part of the combustion
chamber. In the center of the combustion chamber, the flux forms several vortices with the presence of a
return flow up and down the space of the combustion chamber (Fig. 3b).
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a) b)

Figure 2 - General view of the BKZ-75 boiler at the Shakhtinskaya TPP a)
and its discretization for control volumes b)
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a) cross section (z= 4.0 m), b) longitudinal section (y=3.3 m)

Figure 3 - Velocity distribution in the combustion chamber
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Figure 4 - Temperature distribution in the combustion chamber

Fig. 4 shows the temperature distributions characterizing thermal behavior of a pulverized coal flow
in the studied combustion chamber. It can be noted that the temperature reaches its maximum values in the
region close to the location of the burners, because here, due to the vortex character of the flow, a
maximum convective transfer is observed and, as a result, the residence time of coal particles increases,
which leads to an increase in temperature in this zone.

g.) 1600-

-

1400 -
1200 -
1000 -

800 -

600 -
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Figure 5 -Temperature distribution along the height of the furnace chamber

Lines correspond to numerical computations; B are theoretical values obtained by the method of
thermal calculation (CBTI — Central Boiler-and-Turbine Institute) [37]; &, @ are the experimental data
obtained at the thermal power plant [38-39]
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Analysis of Fig. 5 shows that the results of numerical simulation of temperature dependence on the
height of the combustion chamber agree with enough accuracy with the theoretical values obtained by the
method of thermal calculations suggested by CBTI (Central Boiler-Turbine Institute) [37] and the data
obtained directly at TPP [38-39]. This enables us to assess the reliability of the obtained results and the
applicability of the physical, mathematical and numerical model to further study of thermal characteristics
of the BKZ-75.
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Figure 6 - Energy distribution in chemical reactions

As a result of numerical simulation, the energy distribution of chemical reactions in the main sections
of the furnace space, the radiation vector profiles in the central sections of the furnace and the distribution
of the radiant energy flow to the walls of the combustion chamber were obtained.

The Fig. 6 illustrations that chemical reactions with the highest heat release occur in the fuel and
oxidizer supply, i.e. near the installation of burners. In this area mixing of combustible substances and
oxygen in the air reaches its maximum level due to intensive mixing, turbulent pulsations and a vortex
flow character. This in turn contributes to an increase in the rate of the chemical reaction of carbon
oxidation with the release of the maximum amount of energy (Qchem= 3470.9 kW/m3).

Conclusion

Based on the results of us study, the following conclusions can be drawn:

e The temperature reaches its maximum values in the area close to the location of burners as here,
due to the vortex character of the flow, the maximum convective transfer is observed and as a result, the
residence time of coal particles increases, which leads to an increase in the temperature in this zone.

e The energy released by chemical reactions reaches its maximum value 3470.9 kW/m’ in the
section of burners. In central part of the combustion chamber this value is 152.2 kW/m’.

e The physical and mathematical model used in the numerical calculations adequately describes
burning of high-ash coal in the combustion chamber of the BKZ 75-39 boiler at Shakhtinskaya TPP,
Kazakhstan. The obtained results are in good agreement with the experimental data, which were obtained
specially at the thermal power station.
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Ipara k. Uex Texuukanslk yauBepcureTi, [Ipara, Uex PecryGnnkacst

KbLTY JIEKTP CTAHIUUAJAPBIHBIH /KAHY KASAHBIHIA
KBLTY AJIMACY ITPOLECTEPIH 3D MOAEJIBJAEY

AnHoTauus. by xymbicTa HakThl reoMeTpus aiimakrapeiaga (KOC, JKDO0) xkorapbl TeMIiepaTypaarbl 9Cep €TETiH
opTamarbl TypOyJNeHTTI arblHOAPBIHIAA JKBUIY JKOHE Macca TachIMaJbIHBIH IIPOLECTEPiH JKaH-KaKThl 3epTTey YIIiH
kommbtoTepaik 3D monenpaey opici madimanansurgsl. [Haxtunck KOO 3aybiteinmarsl BK3-75 Ka3aHABIKTBIH JKaHy
KaMepachlHAA JKBUTy IPOLECTEPiH KOHE arblHHBIH a’dpOJMHAMUKAJBIK CHIATTaMajJapblH 3epPTTeyre apHalfaH eCemTiK
SKCIIEPUMEHTTED XKOFaphbl KYJJl >KaHapMaillblH ckaHybl Ke3iHae kyprizinai. Komnsrorepnik 3D Monenbaey omicTepin
naiananFaH Ke3/ie eHAIpICTIK O0BEKTIICP/AiH jKaHy KamepallapblHIa HAKThl TEXHOJIOTHSUIBIK YPAICTEP aFbIHBIHHA dCep
eTeTiH KYOBUTBICTap MEH (DaKTOpIapIblH €H KOIl CaHbl €CKepisi. 3epTTeseTiH KaHy KaMepachIHbIH aj’pOAWHAMUKAIIBIK
cyn0eci YChIHBUIFaH, XMMUSUIBIK PEaKIMsIap apKbUIbI Maiaa O0NaThIH TEMIIEpaTypa epicTepi MeH 3Heprus 0ely, COHai-
aK JKaHy KaMepachIHbIH HETi3ri JKbUTy ajaThlH OeTTepiHe paJWalMsUIBIK JKbUTy AaFblHIAPBIHBIH MOHJEP] abIHAJIBL
OpbIHJANIFaH ecenTey dKCIEPUMEHTTEPIHIH HOTHXKEepi KATThl OTHIHMEH YKYMBIC iICTCHTIH OHEPKICINTIK Ka3aH IbIKTAP IbIH
JKaHy KamepajapblH JKaHa J>KoHE jkobanay Ke3iHIe, (U3HMKANbIK JXOHE MAaTEMATHKAIBIK MOJEIBICP OCHI Calaarbl
FBUIBIMHBIH JaMy JeHreliHe apHaifaH €H TOJBIK, 3aMaHayd >KOHE OHTaiiapl  Oonblm TaObUIagsl MyMKiH. JKany
KaMepachlH/a JKbUIy 3JIEKTP CTaHUMSUIAPBIHBIH JKaHy KamepajapblHAAa KaTTbl OTBHIHJBI JKary OoiibiHma 3D ecentey
JKCIIEPUMEHTTEpiHEe apHAJIFaH 3aMaHayd TEeXHOJOTHIAPIBl KOJNAaHy OapliblK jKaHy OHIMIEpiHiH, COHBIMEH Oipre aHy
aliMaFbpIH/IaFbl JKAHFBIII KOMIp MPOLECIHIH 3USHIBI 3aTTap MEH 0acka Ja CHIATTaMalIapbIHBIH KbUIIAMIIBIFbIH,
TeMIIepaTypackiH, KbICEIMBIH KoHE KOHLIEHTPAIMSCHIH erKeH-TerKeiili cumaTrayra MyMKIHIIK Oeperi.

Tyiiin ce3mep. Kbuty Macca anMacy, jkaHy, KaTTbhl OTBIH, IUIa3MaliblK aKTHBALUS, apOJWHAMHUKAIBIK arbIC,
KOHLIEHTPAIIHS JKOHE TeMITepaypa epici, 3USHIBI 3aTTapIbIH KaIJbIKTaPbIL.

A.C. AckapoBa ', C.A. Bosierenosa ', I Illapapux’,
B.10. MaKCI/lMOBl, A.O. HyreimanoBa ! , C.A. BosierenoBa 2

'Kazaxcknit Hanmonanseelit Y HIBepCHTET HMEHH amb-Dapabu, GU3MKO-TeXHUIECKHiT (BaKyIbTer,
r. Anmartsl, Kazaxcras;
2 HayuHo-ucciieoBaTeIbCKHi HHCTUTYT SKCIIEPUMEHTABLHOM 1 TeopeTrueckor ¢pusuku (HUNDTD),
r. Anmarsl, Kazaxcras;
? Yemckuii TeXxHHUECKHIT yHuBepcuteT B lpare, GpakynbTeT JUHAMUKH KUIAKOCTH ¥ TEPMOJTUHAMUKH,
r.Ilpara, Yemickas PecriyOnuka

3D-MOJEJUPOBAHME INTPOLHECCOB TEIIJIOOBMEHA
B KAMEPE CTOPAHMSA KOTJIA TEIUIOBBIX DJIEKTPUYECKUX CTAHIIAN

AHHOTauus. B Hacrosmield pabore MeromamMu KOMIBIOTEPHOTO 3D-MoIenupoBaHHs MPOBENCHO KOMILICKCHOE
UCCJIE0BaHUE MPOLIECCOB TEMIOMACCONEPEHOCa B TYpOYJICHTHBIX TEUSHUSIX BBICOKOTEMIIEPATYPHBIX PEarupyrolux cpes
B obnactsx peanpHol reomerpun (TOC, TOL). BeraucianTeabHbIe SKCIEPUMEHTHI 110 UCCIEI0BAHUIO TEIIOBBIX IPOIIECCOB
U a’pOAMHAMHUUYCCKUX XapaKTEPUCTHUK TEUEHMs NPOBEJCHBI B TOMOUHOH kamepe koriaa BK3-75 Illaxtunckoit TOIl mpu
CropaHuM B HEW BBICOKO30JIPHOI'O 3HEPreTHYEecKOro TOIUIMBA. IIpM HCHONB30BaHMM METONOB KOMIBbIOTEpHOTo 3D-
MOJICTMPOBAHUSL YYTEHO HauOoiblllee KOIMYECTBO SBICHUH M (aKTOPOB, BIMAIOIIMX Ha MPOTEKAHUE pPealbHBIX
TEXHOJIOTHYECKUX TPOIECCOB B KaMepax CropaHus NPOMBINUIEHHBIX 00bekToB. IlpencraBieHa a’poJHHaAMHUYECKast
KapTHHA UCCIIEyEeMOM TOMOYHOM KaMephl, TOCTPOEHBI TEMIIEPATYPHBIE MO U PACIPENEeNeHUs SHEPTHH, BbIACIAIOMEHCS
32 CYeT XMMHUYECKMX peaKknMud, a TakkKe IOJyuYeHbl 3HA4YCHUS paJUallMOHHBIX TEIUIOBBIX ITIOTOKOB Ha OCHOBHBIE
TCIJIOBOCIIPUHUMAIOIINE MOBEPXHOCTU KaMEphbl CrOpaHus. PC3yHbTaTbl MPOBCACHHBIX BbIYUCIUTCIbHBIX 3KCIIEPUMCHTOB,
MOTYT OBITh HCIIOJIE30BaHBI IIPH MPOESKTHPOBAHUH HOBBIX U I0OPaOOTKE CYIIECTBYIOIIMX TOMOYHBIX KaMep MPOMBIIUICHHBIX
KOTJIOB, HUCIOJb3YIOIIUX TBEPAOE TOIUIMBO, IMOCKOJBKY MCIOIb3yeMble (U3MKO-MaTeMAaTHUECKUE MOJEIH SBIISIOTCS
HanOoJiee TOJHBIMH, COBPEMEHHBIMH M ONTHMAIBHBIMH JJIsI JAQHHOTO YPOBHS pPa3BHTHS HAyKd B 3TOH OOJACTH.
HpI/IMeHeHI/IC COBPEMCHHBIX TEXHOJIOTHI JUISL IPOBEACHUSA 3D-BBIYHUCIUTEIBHBIX OKCIIEPUMEHTOB 110 CXKUT'aHUIO TBEPAOTO
TOIUIMBA B TOMOYHBIX Kamepax TOC, MO3BOJAMT MOAPOOHO ONMUCATh MOJI CKOPOCTH, TEMIIEpaTypbl, AABICHUSA U
Konuel-npaunﬁ BCCX MNPOAYKTOB COKUTaHHA M NPEKAC BCEro BPEAHBIX BCEHICCTB M APYI'HX XapaKTCPUCTUK IIpoLecca
COKUTAHUS YIJI 110 BCeMy TOIIOYHOMY IPOCTPAHCTBY U Ha BBIXOJIE U3 TOIOYHON KaMephl.

KioueBble ciaoBa. TeruiomacconepeHoc, ropeHue, TBEpAOe€ TOIUIMBO, IJIa3MEHHas aKTUBAllMs, adpoAMHAMMKA
TEUeHUs], KOHLEHTPAIIMOHHbIE U TEMIIEPATyPHbIE I0JIS, BBIOPOCH! BPEIHBIX BEIIECTB.
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NUMERICALLY APPROXIMATE METHOD FOR SOLVING
OF A CONTROL PROBLEM FOR INTEGRO-DIFFERENTIAL
EQUATIONS OF PARABOLIC TYPE

Abstract. A linear boundary value problem with a parameter for integro-differential equations of parabolic type
is investigated. Using the spatial variable discretization, the considering problem is approximated by a linear
boundary wvalue problem with a parameter for a system of ordinary integro-differential equations.The
parameterization method is used for solving the obtained problem. The approximating problem is reduced to an
equivalent problem consisting of a special Cauchy problem for the system of Fredholm integro-differential
equations, boundary conditions, and continuity conditions of the solution at the partition points. The solution of the
Cauchy problem for the system of ordinary differential equations with parameters is constructed using the
fundamental matrix of the differential equation. The system of a linear algebraic equations with respect to the
parameters are composed by substituting the values of the corresponding points in the boundary condition and the
continuity conditions. Numerical method for solving of the problem is suggested, which based on the solving of the
constructed system and method of Runge-Kutta 4-th order for solving of the Cauchy problem on the subintervals.

Key words:partial integro-differential equations of parabolic type, problem with parameter, approximation,
numericallyapproximate method, algorithm.
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Control problems, which are also called boundary value problems with parameters and the problem
of parameter identification for a system of ordinary differential and integro-differential equations with
parameters, have been actively investigated in recent decades. Models describing reaction-diffusion
processes lead to control problems for integro-differential equations of parabolic type [1-17].Questions
of existence, uniqueness and stability of solving problems with parameters are very important for
development of numerical methods of identification of parameters of the mathematical models described
by integro-differential equations of parabolic type [1-17].

In the present paper, linear problem with a parameter for an integro-differential equation of parabolic
type is investigated. By discretizing a spatial variable, the considering problem is approximated by a two-
point boundary value problem with parameters for a system of Fredholm integro-differential equations
with a degenerate kernel.By introducing additional parameters [18-23] as the values of the desired solution
at some points of the interval [0, T], where the problem is considered, the obtained problem is reduced to
the equivalent problem consisting of a special Cauchy problem for the system of Fredholm integro-
differential equations, boundary conditions, and continuity conditions for the solution at the points of
partition.Using the integral equation, that equivalent to the special Cauchy problem for the system of
Fredholm integro-differential equation and the property of the degeneracy of kernel of the integral term,
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we obtained a representation of the solution of the special Cauchy problem using the entered parameters at
the assumption of invertibility of a some matrix. Based on this representation, a system of algebraic
equations with respect to the parameters is constructed from the boundary conditions and the continuity
conditions of the solution. We offer algorithm for solving the linearboundaryvalue problem for the
equation with degeneratekernel,anditsnumerical implementation.

We consider a linear boundary value problem with a parameter for an integro-differential equation of

parabolic type
2

d d
& a(x,t) % +c(x,)u + b(x, Hulx) +

ot
+p(x,t) fOTl/J(x, sulx,s)ds + f(x,t), (x,t) €Q=(0,w) x (0,T), (1)
u(x,0) =0, x € [0,w], 2)
u(x,T) =0, x € [0,w], 3)
u(0,t) = h1(8), w(w,t) =,(8), t€[0,T], “)

where u(x,t)issought function, p(x)isunknown functional parameter, functionsa(x,t) = a, > 0,
c(x,t) <0, b(x,t), @l t)Y(xt), f(x,t)are continuous in tand Holder continuous inx on(Q;
functionsy, (t), Y, (t)are continuous on [0, T]. It is assumed that the boundary functions are sufficiently
smooth and satisfy the matching conditions.

The solution of the boundary problem (1)-(4) is a pair of functions(u*(x, t), u*(x)),where function
u*(x,t) is continuouson(l, that has continuouspartial derivatives with respect to x of first order, with
respect to t of second order, satisfies the integro-differential equation (1) at u(x) = u*(x), x € [0, w],and
boundary conditions (2)-(4).

In view of condition (2)-(4), from (1) we obtain two groups of equations for determining
p(0)andu(w):

T
b(0,0)1(0) = §,(0) — 9(0,0) f (0, )P, (s)ds — £(0,0),
OT
b(w, (@) = #2(0) — p(w,0) f ¥(w, ), (5)ds — (@, 0),
OT
b(0, T)u(0) = $1(T) — 9(0,T) j (0, )P (s)ds — £(0,T),
0

T
b(w, i) = §2(T) — 9(@,T) f W(@,$)B(s)ds — f(,T).
0

These relations also are the matching conditions with respect to initial data.

We take Vh > 0 and produce a discretization by x: x; = ih,i = 0,P, Ph = w.

We introduce the notationsu;(t) = u(ih,t), u; = u(ih), a;(t) = a(ih,t),c;(t) = c(ih,t), b;(t) =
b(ih, t), 9;(t) = @(ih,t), () = Y(ih, 1), fi(t) = f(ih,t),i =0, P.

Problem (1) - (4) is replaced by the following linear boundary value problem with a parameter for an
integro-differential equation

= (T e+ by O+
+9:(0) fy Yi(u(s)ds + fi,(1), i=LP—1, 5)
u;(0)=0,i=0,P, (6)
3 u;(T)=0, i =~0,—P, (7)
uo(t) = P1 (1), up(t) = P, (t), t €[0,T]. ®)
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The functionsu,(t), up(t), and parameters pg,up are known.
Problem (5)-(8) will be rewritten in vector-matrix form

S = A+ B+ Ot) [; W(u(s)ds + F(), wu€R"™,  te(0T), 9)
u(0) = 0, (10)
u(T) =0, (11)

whereu (t) = (uy (t), uy(t), ..., up_1(t)), u = (U, Uy, ..., Up—1)-unknown function and parameter,

Zal(t) 1(t) a;l(zt) 0 0
az(t) Zaz(f) (t) ax(t) 0
h? h2
A(t) =
® 0 a;(;) 2a3(t) () 0 ;
0 0 0 Z“P_l(t) +cp_q(b)

B(t) = diag{b;(t), by(t), ..., bp_1 ()},
(1) = diag{p,(t), p2(t), ..., pp_1 (D)},
W(s) = diag{y,(s), P2 (s), ..., Yp_1(s)},

PO = (290,0 + AO LD, . Z2D5,0 + fra )

Here (P — 1) X (P — 1)-matricesA(t), B(t), ®(t), W(s)and(P — 1)-vectorF (t)are  continuous
on[0, T].

The solution to problem (9) - (11) is a pair(u*(t), u*), where continuous on [0, T]and continuously
differentiable on (0,T)a function u*(t)satisfies the integro-differential equation (9) at u = u*and
conditions (10), (11).

To solve the problem with parameter (9)-(11), the approach developed in [24-26] is used, based on
the algorithms of the parameterization method and numerical methods for solving Cauchy problems.

Scheme of the method.Points0 = t; < t; < -+ < ty_; <ty =T are taken and the interval[0,T) is
divided into Nsubintervals:[0,T) = UN_[t,_1,t,), which is denoted byAy[20]. The restriction of the
function u(t) to the r —th interval [t,_q,t,) is denoted by x,.(t), i.e. u,.(t) = u(t)for t € [t,_4,t),
r=1,N.

LetC([0,T], RP~1)be the space of continuous on [0, T]functionsu: [0, T] — RF~1with norm||u||; =

max;efo.rllu(®)ll; C([0,T], Ay, RE~DN) - the space of systems of
functionsu[t] = (uq (£), uy(t), ..., uy(t)), where u,:[t,_q,t,) = RP~1 are continuous on[t,_q,t,) and
have finite left-sided limitslim,_,; _o u,-(t) for allr=1, N, with

norm||u[-]|l; = max,—1x suprere, ) llur (Ol

We introduce additional parameters A, = u,.(t,_;), =2,N, 1; = u.Making the substitution u,(t) =
z1(t), u,(t) = z.(t) + A,on every r-th interval [t,_q,t,), =2, N,we obtain multipoint boundary value
problem with parameters

tj
d— = A()z, + B(D)A, + (E) z j w(s)z(s)ds +
J=1t; 4
+@(t) X Zf j lP(s)/l ds + F(t), tE€ [ty ty), (12)
Zl(tO) = 0: (13)
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N U
dz
S MO+ A+ BOA + 00 Y f W(s)z(s)ds +
j=1 tji—1
+q)(t) Z?’=2 fti'j_l ‘P(S)A]ds + F(t)l t e [tT—lJ tr): (14)
z(ty—1) = 0, =2, N, (15)
Ay +1limep o zy () = 0, (16)
limep, 02:(8) = 2y, (17)
AS + limtﬁts_o Zs(t) = AS+1' S = Z,N - 1 (18)

The solution of the problem with parameters (12)-(18) is a pair (z*[t], 1*)where the functionz*[t] =
(zi(t), 23 (L), ...,z (1)) € C([0,T], Ay, RP~DN)with  continuously  differentiable ~ components
zi(t)on[t,_q, t,)and A* = (3,45, ..., Ay) € RC~DN  gatisfies the integro-differential equation with
parameters (12), (14), initial conditions (13), (15), relations (16)-(18) atd; = /'lj-,j =2,N.

If the pair(u*(t), u*) is a solution of problem (9)-(11), then the pair (z*[t], A*)with elements z*[t]
(Zi (), z3(L), ...,z () € C([0,T], Ay, RP~DNY A* = (A%, 25, ..., A) € RP™DN  where A% = p*
R, zi(6) = uj(t), tE€ [ty ty), A =up(troq), z2 (@) = up(®) +up(t,—y), t € [trog,t), T
2,N,is the solution of problem (12)-(18). Conversely, if a pair (Z[t],A)with elements Z[t] =
(Z,(1), Z,(t), ..., Zy () € C([0,T], Ay, RPN 1= (1,15, ..., Ay) € R®™DN is a solution of (12)-
(18) , then the pair (7i(t), i)defined by the equalities #(t) = 2,(t), t € [to,t1),0i(t) = Z.(t) + At €
[ty_1,ty), 1 =2,N,ii(T) = limy,r_o Zy(t) + Ay and  ji = A;, will be the solution of the original
boundary value problem with parameter (9) - (11).

Using the fundamental matrix X,.(t)of the differential equation% = A(t)x,t € [t,_1,t.), r=1,N,
we reduce the solution of a special Cauchy problem for an integro-differential equation with parameters
(12)-(15) to an equivalent system of integral equation

m

t N tj N tj
2,(6) = X, () f OO f W(s)z()ds + » f W(s)Ads b dr +
to J=1t;_4 J=2tj_4
+X,(6) [, XT @B@dr \+X,(0) [ X7 (©F (D), ¢ € [to, 1), (19)
t N tj N tj
2.(t) = X, () f X1 (DD (0) z f W(s)zj(s)ds+z f W(s)Ads | dr +
tro1 J=1¢j4 J=2tj_4

t t
X, (D) f X1A@ AT A, + X, () f X=1(0)B(D)dT A, +
t t

r—1 r—1

+X,(t) fti_er_l(r)F(T)dT,t €[t,_1,t,), r=2N. (20)

Let& =X, ftt]’_ . W(s)z;(s)dsand rewrite the system of integral equations (19), (20) in the form

t N tj
z1() = X{(t) | X{T ()P (1) € + Y(s)Ads pdt +
1 1 t-{ 1 JZ=2 tjfl ]
+X,(6) [, XT @B@dr A +X,(0) [ X7 ©F (D), ¢ € [to, tr), @1
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N

t
2.(6) = X, () f X1 D)€ + f W(s)Ads b dr +
ty_

J=2tj_4

+X,.(t) f XY (@A@dT A + X, () f XY (B(t)dT A +
t t

+X,.() fti_er‘l(T)F(T)dr, t €[t,_4,t.), r=2N. (22)

Multiplying both parts of (21), (22)by W(t), integrating on[t,_4, t,], and summing byr, we obtain a
system of linear algebraic equations with respect tof € RP~1

§ =GN + Eroy V(Ay) A+g(FAy), (23)

with (P — 1) X (P — 1)-matrices

N

G(Ay) = f W(o)X, (2) f ~1(5)d(s)dsdr,
T=1t,_4
N

Vi(Ay) = f W()X, (1) f ~1(5)B(s)dsdx,
r= 1151, 1

V. (ay) = f W)X, (1) f X71()A(s)dsdr +
t treq

[
S
=

=1 Z?’=1 ftt:_l Y(0) X, (1) f;_l X (1)@ (ry)drydr fttj.{l W(s)ds, r
and(P — 1)—vectors

eF.Ay)=Z0 [ W@X @) [0 X ()F(s)dsdr.
We write the system (23) in the form
[1 = G(AW]E = X7=1 Ve (A) A +g(F.Ay), (24)

wherelis the identity matrix of (P — 1)dimension.

The special Cauchy problem (12) - (15) is equivalent to the system of integral equations (19) - (20).
This system, due to the degeneracy of the kernel, will be equivalent to the system of algebraic equations
(23) with respect tof € RP~1. The unique solvability of the special Cauchy problem was investigated in
[19, 20]. It has been established that with a sufficiently small steph > 0: Nh =T partitioning a
segment[0, T] the special Cauchy problem will be unique solvable.

Let the matrix I — G(Ay)be invertible, i.e. exists [I — G(4y)]~L. Then, according to (24), the vector
& € RP1is determined by the equality

§=[1—-GUIT 221 Ve (Aw) AT — G(AN)] 7 g(F.Ap). (25)

In (21), (22), instead of & substituting the right-hand side of (25), we obtain the representation of the
function z,.(t)in terms ofd,, r = 1,N + 1:

— 18 ——
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tj

N t
ACEDY {xlm [ xr@omar [[1 —GUDIT () + | W(s)ds
t.

»

+X31(t) ftto XU @@ - G(AN] " g(F, Ay) + F(D)]dr, t € [to, 1),

j=2 to j—1
t

1X,(0) f X @IS — 6]V (Ay) + B@]dr Ay +
to

(26)

tj

N t
Z®) =) {mt) [ xr@ew@ar l[l —GUIT @ + | w(s)ds

b

t t
X, () j X (@A@dTA, + X, (D) j X P - 6]V (Ay) + BTy +

tr—1 tr—q
X0 f_ X @I~ 6] g(F, &) + FOMT L€ [trop,t), r=Z N @7)

t]—l

j=2 tr—1

We introduce the notations

tr tj
D, j(Ay) = X, (t;) f X7 (D)@ (r)dr l[l - GUAN] V(AN + f Y(s)ds|, r#j, r1j=2N,
tr—q N tj—1 .
D,y () = X, (t,) f X (D) P(D)dr [[1 — GV (A) + f W(s)ds
tr—1 . tj-1
+ +X,.(t,) f X7 (D)A(r)dr,r = 2,N,
N tr-1 .
Dy1(An) = X,(t,) f X @D ®@dT [ — GV () +X, () j X (B@dr,r =TT,
t;_l tr;:
F.(dy) = X,(t,) f X @@ — U g(F, Ay)dr +X,.(t,) f X (F(@dr,r = TN.
Then from (26), (27) we obtain
28)

limep o2 (t) = Z?]=1 D, j(AN) N + F.(4y), r=T1N.

Substituting the corresponding right-hand sides of (28) into the conditions (16) — (18), we obtain a
system of linear algebraic equations with respect to the parametersAd,, r = 1, N + 1:
[I + Dy n(4W)]An + Z?’Qf Dy j(An) A = —Fn(4p), (29)

I}I=1 Dl,j(AN) 7\j - [1 - Dl,Z(AN)]AZ = _Fl(AN): (30)

j#2
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[I + DS,S(AN)]AS - [1 - Ds,s+1(AN)]/15+1 +

+3V o1 Ds;jW)A =-Fdy), s=2,N-1. (31)

Jj#S,j#s+1

We denote the matrix corresponding to the left side of the system of equations (29) - (31) by
Q.(4y)and write the system in the form

Q.(4\)A = —F.(4y), 2 € RPNV, (32)
where F.(4y) = (Fy(4y), F1(4y), ..., Fy—1(4y)) € RP~DN,

Cauchy problems for ordinary differential equations on subintervals
% =A®x+P®), x(t,1) =0, t€[typ,t;], r=1LN (33)
are a significant part of proposed algorithm. Here P(t)is either (n X n) matrix, or n vector, both
continuous on [t,_q,t.], r = 1, N. Consequently, solution to problem (33) is a square matrix or a vector
of dimension n.
Denote by a(P, t) the solution to the Cauchy problem (33). Obviously,
t

a(P,t) = X, (6) f X @P@dr, tE [t t],
tr—1
where X,.(t) is a fundamental matrix of differential equation (33) on the r-th interval.

We offer the following numerical implementation of algorithm based on the Runge — Kutta method of
4™ order and Simpson’s method.

1. Suppose we have a partitionAy:0 =1y <ty <- <ty <ty=T. Divide each r-th
interval [t,_q,t.], r=1,N, intoN, parts with step h, = (t, —t,_,)/N,. Assume on each
interval [t,_;,t,] the variable f takes its discrete values: f=t,._y,t=t,_q+h. .., E=t_1 +
(N, — Dh,.,t = t,, and denote by {t,_, t,} the set of such points.

2. Using the Runge Kutta method of 4™ order, we find the numerical solutions to Cauchy problems

dx
Fri A)x + &(t), x(t,—1) =0, tE€[t,_q,t,]
and define the values of (n X n) matrices a’r(®, £)on the set{t,_4,t,}, r =1,N.

3. Using the values of (n X n) matrices W(s)and a"(®,£)on {t,_;,t,}, and Simpson’s method,
we calculate the(n X n)matrices

P (@) = [T ¥@at (@, 1)dr, r=T,N.

Summing up the matrices ‘T’Th "(®) over r, we find the (n X n) matrices GE(A N) = ?’zl@jhj (D),

where ii = (hli hz, ey hN) € RP.
4.  Solving the Cauchy problems

dx
i A)x + A(t), x(ty_1) =0, tE€ [ty_q,tr],
dx
T At)x + B(t), x(t,_1) =0, tE€ [t,_1,t]

dx
I =At)x +F(t), x(t,_1) =0, tE€[tr_q,t], r=1,N,

by using again the Runge—Kutta method of 4™ order, we find the values of (n X n) matrices
a(A,t),a(B,t) and n vector a(F,t) on {t,_4,t,.}, r=1,N.
5. Applying Simpson’s method on the set {t,_1, t,.}, we evaluate the definite integrals
= [ Wdr,  PTQA) = [ W@a(a1)dr,

— 20 ——
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BB = [ Y@aBd,  PE) = [ W@a(F,1)dr,r =T N.
By the equalities

~ ~h;
Vlh(AN) = 7:11111- "(B),

. - _h; -
Fay) = B (A) + 2, 9 (@) - 9 r = 2N,

~ ~h;
g"(F,Ay) = XL, 97 (F).

we define the (n X n) matrices V,"(4y) and n vectors g"(F, 4y), r = 1, N.

6.  Construct the system of linear algebraic equations with respect to parameters

Q}4n)A = ~EM4y), 1€ RPDN (34)

Solving the system (34), we find A", As noted above, the elements of /'lrl:(/ﬁ,)lﬁ, ...,/1%) are the
values of approximate solution to problem (12)-(18)at the left-end points of subintervals.

7. To define the values of approximate solution at the remaining points of set {t,_q, t,-}, we first
find

£ = [1 - GR(ay)] " Ty VW) [T — G| gR(F.A).

and then solve the Cauchy problems

N

d . g 7

d_1: =Au+ o) | "+ Z leh’ ‘A |+ BOAM + F(1),
j=2

u(ty) =0, teE /|ty t],
N
du _ ADu+ o) | " + Z @jhj AP |+ BOA} + F(D),

dt
=2

u(t,_) =A% te(t,_y,t], r=2N.

And the solutions to Cauchy problems are found by the Runge—Kutta method of 4th order. Thus,the
algorithm allows us to find the numerical solution to the problem (9)-(11).
So, we propose the numerically approximate method for solving of the original problem (1)-(4).
Example. We consider a linear boundary value problem with a parameter for an integro-differential
equation of parabolic type
ou %u
— =a(x,t) F) +clx,t)u+ b(x, t)ulx) +

ot
+o(x,t) fOTw,l)(x, sulx,s)ds + f(x,t), (x,t) € Q= (0,w)x(0,7T), (39)
u(x,0) =0, x € [0, w], (36)
u(x,T) =0, x € [0, w], 37)
u(0,8) = P1(8), u(w, ) =P,(t), t €0,T], (38)

where w = 0.5, T = 0.1, a(x,t) = 1,c(x,t) =0, b(x,t) =t? + Lo(x, t) = x2(x,5) = s, f(x,t) =
xe*t sin(10mt) + 10me*t cos(10mt) — t2e*t sin(10mt) — (2 + D(x3 + 1) —

0.1 2_ 3\ 2 ~ ~
S (zgffffolotfgz) 25, (6) = sin(10me), P, (£) = e®Stsin(10me).

We take h = 0.1 and produce a discretization by x: x; = ih,i = 0,5.

We introduce the notationsu; (t) = u(ih, t), u; = u(ih), f;(t) = f(ih,t),i = 0,5.

Problem (35) - (38) is replaced by the following linear boundary value problem with a parameter for
an integro-differential equation
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% = % + (% + Dy + (0.1 0)? foo'ls ‘u;(s)ds + f;(t), 1,4, (39)
u;(0)=0, i =0,5, (40)

4;(0.1) =0, i =0,5, (41)

uy(t) = sin(10mt), us(t) = e®tsin(10mt), t € [0,0.1]. (42)

In view of condition (40)-(42), from (39) we obtain two groups of equations for determining pyandgs:
= T ~
by (0o = 11 (0) — ¢, (0) fo Yo (s)P1(s)ds — f,(0),thenyy = 1,

bs(0)ps = P2(0) — 95(0) [ P5(s)t,(s)ds — f5(0)thenps = 1.125.

The functionsu,(t), ug(t), and parameters pg,us are known.

Problem (39)-(42) will be rewritten in vector-matrix form

% = A(Du+BMOu+ &) [T W(s)u(s)ds + F(t), wu€eR* t€(001),  (43)
u(0) =0, (44)
u(0.1) = 0, (45)

where u(t) = (uy (), up (), uz (t), ug (£)), & = (i1, ta, i3, 144 -unknown function and parameter,

—200 100 0 0 t2+1 0 0 0
[ 100 -200 100 0 _ 0 t2+1 0 0
A = 0 100 —200 100 » B() = 0 0 t2+1 0 ’
0 0 100 —200 0 0 0 t2 +10
001 0 0 0 s 0 0 0
[ 0 004 O 0 [0 s 0 O
*@W=\9 o 009 o [*O=lo 0 s o)
0 0 0 0.16 0 0 0 s
/ f£(0.1,t) + 100 sin(10mt)
_ f(0.2,¢t)
FO = \ £(03,1)
£(0.4,t) + 100e%5tsin(10mt)

Here we use thenumerical implementation of algorithm. Accuracy of solution depends on the
accuracy of solving the Cauchy problem on subintervals andevaluating definite integrals. We provide the
results of the numerical implementation of algorithm by partitioning theinterval [0, 0.1] with step
h=0.002.

Solution to problem (35)-(38) is pair (u*(x,t), u*(x)), where u*(x,t) = eXsin(10mt), p*(x) =

e%1tsin(10mt)

x3 4+ 1. Then solution to problem (43)-(45) is pair (u*(t),u*), where u*(¢t) :(

e%2tsin(10mt)
e%3tsin(10mt) |
\eo"”sin(lOnt)
1.001
w= 183? and the following estimates max||u* — fi|| < 0.00009, and maxj=m||u*(tj) - ﬁ(tj)” <
1.064

0.000004 is true.
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A.T. Acanora'?, D.A. Balmponal’m, K.M. Kannpﬁaesal’z"'

'MaremaTrka KoHEe MaTEeMaTHKAIBIK MOJIC/IbICY HHCTHTYThI, AvaThl, Kazakcran;
2AlcnapaTr])m JKOHE eceNTeyilll TEXHOIOTHsIIap HHCTUTYTHI, AnMatel, KazakcTan;
*Kasak ¥JITTHIK KbI3/ap [earoruKaibK yHHBepcuTeTi, AnMarel, Kasakcran;
4XaHLIKapaJ'II>IK aKIMapaTThIK TEXHOJIOTHUSIIAp YHUBEpCUTETI, Anmatsl, KazakcTan

IMAPABOJIAJIBIK TEKTEC MHTETPAJIIBIK-IA®®EPEHIAAJIBIK TEHAEYJIEP YIITH BACKAPY
ECEBIH WIELTYITH CAHJIBIK KYBIKTAJIFAH 9ICI

AnHoTanus. ITapaGonanslK TeKTeC MHTErpaIIbIK-Iu(depeHIMaIABIK TeHaeyIep YIIiH mapamerpi 6ap CBHI3BIKTHIK
HIETTIK ecemn 3epTreneni. KeHiCTIKTIK aiHBIMAJbIHBI TUCKPETTEY KOMETIMEH KapacCTBIPBUIATBIH €Cell JKoi MHTErpal/IbIK-
muddepeHnmanaplk  TeHASylep Kydeci yImIiH mapaMeTpi  0ap  CBI3BIKTBIK €Ki HYKTENi MIETTIK  €celIeH
anMpoKCHMAaNUsUIaHaAbl. AJBIHFaH €CeNTi MIeNly YIIiH MapameTpliey 9Iici KONIaHBUIAABL. ANNPOKCHMANUSUIAHFaH ecell
OpenronsM HHTErpanablk AuddepeHuanibpK TeHaeyep xKyieci yirin apHaiisl Komu ecenTepines, mMeTTIK mapTTapiaH
JKoHe Oelly HYKTeNlepiHe IICIIIMHIH Y31iCCi3 mapTTapblHaH TYpaThiH Mapa-napecenke kentipineni. [Tapamerpnepi 6ap
xoi nuddepenmanabik Tenaeynep xyieci yuin Komm ecebin memy muddepeHunanapK TeHAeYAiH (yHIaMEeHTaIIbIK
MaTpHIackl KeMeriMeH Kypbuiapl. [lapaMeTpiepre KaThICTHI CHI3BIKTHI alreOpalibIK TeHACYIIep KyHeci THICTI HYKTenepaiy
MOHJIEPiH IIETTIK IIAPT MEH Y3UIiCCi3 mapTTapbiHa KOK apKbUIbl KYpbUTasl. EcenTi menryaiH KypbuFaH Kyie MeH imkKi
apanbikrapaKomu ece0in memrynin4-mi perti Pynre-Kytraoaicine Heri3enret canblK 9/ici YChIHbLIAbL.

Kinrrik ce3nep: mapabonukanblk TekTec aepOec TYBIHABUIBI HMHTErpaIabIK-TuddepeHInanabK TeHaeyIep,
napameTpi 6ap ecerr, almPOKCHMANUs, CAHIBIK XKYBIKTaTFaH MiC, alTOPUTM.

YK 517.958:536.2; 517.968.7; 519.62/.64
MPHTMU 27.35.45; 27.33.19; 27.41.19

A.T. Acanosa'?, D.A. Bakuposa'””, ’K.M. Kaqup6aesa'™*

'"MHCTUTYT MaTeMATHKH 1 MaTEMaTHYECKOTO MOJIEIMpoBanus, AiMathi, Kazaxcran;
2I/IHCTI/ITyT UH()OPMAIIMOHHBIX Y BEIYUCIUTENbHBIX TEXHONOT U, AnMaTsl, Kazaxcraw;
’Kasaxckuit Hanmonansusrii XKenckwuii [Tegarornaeckuii Yuusepcuret, Anmatsl, Kazaxcran;
4Me>1<ay1—1ap0;1n1;11?1 Yuusepcuretr Uudopmarnuonnsix Texnonoruii, Anmatsl, Kazaxcran

YUCJEHHO MPUBJNKEHHBIA METO/I PEINEHUSA 3AIAYA YIIPABJIEHUSI
JJIA UHTEI'PO-JUOOEPEHIMAJIBHBIX YPABHEHHUU ITAPABOJIMYECKOI'O TUIIA

AnHoTtanus. Mccnenyercs nuHelHas kpaeBasl 3a7ada ¢ IapaMeTpoM Ul MHTErpo-Aud@epeHINalbHbIX YPaBHEHUH
napabonuyeckoro Tuna. C IOMOIIBIO IUCKPETU3ALUM IPOCTPAHCTBEHHOH IEPEMEHHOIl paccMaTpuBaeMas 3anada
aNMNpoOKCUMHUPYETCsl JIMHEWHOM JBYXTOYEUHOM KpaeBOWM 3ajadeil C [apaMeTpoM Jjsl  CUCTEMBI  MHTErpo-
muddepeHINaNbHbIX  ypaBHeHni. [lIsf pelreHns NOMYYeHHOH 3aJadd IPHMEHSACTCS MeTOJ IapaMeTpPH3allni.
AnmnpoxkcuMupymomas 3ajJada cBeleHa K SKBUBAJIEHTHOU 3a/iaue, cOCTOsIIEeH U3 crenraibHoi 3agaun Komm ams cucteMsl
HHTETpo-THuGepeHIaNbHEIX ypaBHeHIH D penronbma, KpaeBbIX YCIOBHH U YCIOBHIT HETIPEPHIBHOCTH PEIICHHS B TOUKAX
pasouenus.Pemenne 3amaun Komm a1 cucTeMbl OOBIKHOBEHHBIX AM(GEpEHIMANbHBIX YPaBHEHUH C IapaMeTpamu
CTPOHTCA C HCIONB30BaHMEM (yHAAMEHTaTbHON MaTpHIsl IuddQepeHuansHoro ypaBHeHus. CuHcTeMa IJTHHEHHBIX
anreOpandecKux ypaBHEHUN OTHOCHUTENILHO MapaMeTPOB COCTABILIETCS IIyTE€M HMOACTAHOBKU 3HAYEHHH COOTBETCTBYIOIIUX
TOYEK B KPacBO€ yCJIOBHE U yCIO0BHs HEIPepbIBHOCTHU. [Ipeanaraercsa 4ucieHHbI METO/ pellieHus 3aa4l, OCHOBAHHBIH Ha
pelLIeHNH IOCTPOEHHOI cucTeMbl 1 MeTofa Pynre-KyTTs! 4-ro nopsiaka mis pemenus 3agaun Komu Ha mouHTepBaiax.

KnaroueBnle cioBa: HHTErpo-audepeHIHanbHble YPAaBHEHNS C YaCTHBIMH IPOM3BOJHBIMH TapabOIMYecKoro THIa,
3a/1a4a ¢ MapaMeTpoM, alllPOKCUMAIIHS, YUCTEHHO IPHOIMKEHHBIH METO I, alTOPUTM.
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INVESTIGATION OF DIFFERENT DARK MATTER PROFILES

Abstract. Different, commonly accepted and widely used phenomenological dark matter profiles such as the
pseudo-isothermal sphere, Burkert, Navarro-Frenk-White, Moore and Einasto profiles are employed to estimate the
mass distribution of dark matter in various galaxies. The Newtonian gravity is involved to perform computations at
large galactic scales. The distribution of dark matter in diverse types of galaxies is assumed to be spherical without
taking into account the complex structure of galaxies such as their cores, inner and outer bulges, disks and halos. The
theoretical rotation curves are overlapped with the observations for each individual galaxy. By means of the least
square algorithm the model parameters are inferred from the observational data and are subjected to the Bayesian
information criterion, which identifies the more preferred model. The masses of dark matter are calculated for each
galaxy, with all listed profiles, and compared with the visible masses of the galaxies. The results are in agreement
with the ones in the literature.

Keywords: galaxies, rotation curves, dark matter.

Introduction

Astronomers face the fundamental problem of a mass deficiency, which is known as the dark matter
(DM) problem at galactic scales. One observes the presence of DM from dynamical astronomical
measurements, but up to now no one was able to detect any DM particle yet in the ground based
laboratories. The only knowledge we possess is the fact that DM interacts with an ordinary matter via
gravity and dominates preferentially on large scales. It is therefore of particular importance to understand
its properties to set guidelines in preparing more focused physics experiments to detect it. The
determination of the mass distribution in galaxies is one of the most basic subjects in galactic astronomy,
and is usually obtained by analyzing rotation curves.

The idea of DM does not alter the law of gravity like Modified Newtonian Dynamics [1], but
proposes that there exists a new type of matter that has yet to be identified. This idea is also supported by
gravitational lensing experiments [2]. DM does not participate in electromagnetic and strong interactions;
otherwise it would have already been detected. It is believed that DM can interact weakly if it is composed
of weakly interacting particles [3], though there is no evidence to support this idea. So far, observations
indicate that DM acts through gravitational interactions and seems to behave frictionless. Due to this
frictionless behavior, DM is predicted by N-body simulations to be distributed in spherically symmetric
halos [4].

To investigate the distribution of DM within any galaxy a number of different phenomenological
density profiles have been proposed in the literature [5]:

e Cored profiles with central density p, and scale radius 7, with x = r/ 7, being the dimensionless
radial distance (coordinate) from the center of a galaxy to the considered point:
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— pseudo-isothermal (ISO) sphere profile:

Lo
1+ x?

plso(r) = H (1)

— Burkert profile:

_ Lo
Ppu (1) = m : (2)

o Cusped profiles with characteristic radius 7, where the density profile has a logarithmic slope of

—2 (the “isothermal” value) and p, as the local density at that radius.
— Navarro—Frenk—White profile:

- P 3
pNFW(r) x(1+x)2 ( )
— Moore profile:
Pos (1) = ppx” (L4 ) o)

e — Finasto profile with an extra parameter n» which determines the degree of curvature (shape) of
the profile. The family of Einasto profiles with relatively large indices n>4 are identified with cuspy halos,
while low index values n<4 presents a cored-like behavior. The lower the index #n, the more cored-like the

halo profile:
N
PEin (l”) =P exp{Zn(l —x" J} ] (5)
Einasto
100 NFW
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Figure 1 - Different phenomenological dark matter density profiles

In the case of Milky Way Galaxy these profiles have two constraints. They are anchored at a distance
of 8.33 kilo parsec (kpc), which is the distance from the center of Milky Way Galaxy to the Sun. The
second constraint is the total predicted mass of the distribution inside a radius of 60 kpc. This mass has

been predicted to be M =4.7-10" M. The comparison among the profiles is shown in Figure 1. The
— 26 ——
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profiles follow a similar shape when the distance from the galactic center is larger than that of the Sun and
differ more towards the center of the galaxy. The Burkert and isothermal profiles become constant and
approach their characteristic density, while the NFW and Moore profiles diverge near the center.

Methods

The problem of the DM distribution in galaxies, as usually addressed in the literature, is mainly
focused in the halo regions and associated with the galaxy rotation curves obtained from the observations
[6]. A galactic rotation curve describes how the rotation velocity of objects in the galaxy changes as a
function of the object’s distance to the center. As an example we consider a central mass with a test
particle moving on a circular path in the field of the former. The rotational velocity can be determined in
this example from Newton’s gravitational equations and the centrifugal force:

M) Y2
F=o (rrz)m:m ‘;(r) = V(V):\/_Gﬁfr ©)

where M (7) is the central mass profile, m is the test mass and r is the distance between the central

mass and the test mass. The rotational velocity is represented by (7).

The mass of the galaxy is not distributed in a central point, so one has to consider the actual
distribution. The calculation for the galactic distribution requires the integration of Newton’s gravitational
equations with the entire distribution taken into account. We adopt a circular motion of a test mass around
the center of the galaxy. The expected rotation curve would then increase quickly since the considered
mass increases rapidly, due to the high density near the center. Based on the visible mass, the rotation

curve is expected to eventually drop off near the edge of the galaxy like %/— as in formula (6). This is
r

however not what is measured in astronomy. The rotation curves do not drop off according to Newton’s
laws but stay flat near the edge of the galaxies [7]

In equation (6) we calculate the mass profile M (r) with the help of the following formula:
M(r)z Ip(r’)-4ﬂr’2dr’ (7,
0

where p(r) is the DM density profile taken from Egs. (1) through (5).
For convenience, we choose such units where the mass is given in the units of one solar mass and the

radial distance is in parsecs:
5 |G-M(r)-M
() =107 \/ (r)- M., @®)
r-pc
where M, = M is the mass of the Sun in grams, pc is parsec in cm, and the numerical factor in front of

the square root converts the units of v(7) into km/s.

In order to carry out the fitting procedure we exploit the Levenberg-Marquardt nonlinear least squares
method [8, 9].

Results

We compare the fits of rotation curves obtained by means of the models considered in the previous
section. Since one has to compare the models with different number of parameters, which are not nested
into each other, we use the Bayesian Information Criterion (BIC) formulated and developed by Schwarz
[10]. It provides a penalty to models with larger number of parameters to check which of them is more
likely to be realistic. A model with a minimum BIC value is favored [5]. The results of the fitting
procedure are presented in Tables 1 - 6 and in Figs. 2 - 7.
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Table 1 - Model parameters for irregular dwarf galaxy DDO 154

The mass of the baryonic (luminous) matter in the galaxy is 3.58-10° Mg [11]
Profiles + dp,, 107 28 7y £ 67, kpe M+8M , Mg n BIC
Burkert 32.74 +1.47 2.44£0.07 ( 50+0). 61) 108 - 149
NFW 1.61£0.35 1446241 | (1.18%0.49)-10" : 207
ISO 34.74 £1.89 1.31+£0.05 (2,()7i().22).108 - 141
Moore 0.31+0.18 38.96 £18.21 (5.2316.14)10‘0 - 235
Einasto 2.73+£0.27 4.53+0.25 (2.14+0.33)-10° | 1.72£0.13 | 119

As one can see from table 1, for DDO 154 galaxy the BIC value is minimum for the Einasto profile
and is maximum for the Moore profile. The mass obtained by means of the Einasto profile is one order of
magnitude larger than the visible mass.

Table 2 - Model parameters for spiral galaxy NGC 1560

The mass of the baryonic matter in the galaxy is 8.2 -10° Mg [12]
Profiles £y £p,. 107 % 7, t or, ., kpe M+ M, Mg n BIC
Burkert 47.81+2.71 3.1240.12 | (232£0.24)-10° . 142
NEW 2.61+0.47 17324238 | (3.31%1.14)-10" . 136
IS0 47.11+2.93 1.76 £0.08 | (6.98+0.85)-10° - 130
Moore 0.54+0.22 43.81+13.96 | (1.32+1.06)-10" - 140
Einasto 1.75+1.28 9.36+4.09 | (1.32£1.57)-10" | 2.86+1.00 135

For NGC 1560 galaxy the BIC value is minimum for the isothermal profile and is maximum for the
Burkert profile, though the difference between the values is not large. It is worth noting that the modest
improvement in the BIC of the isothermal sphere model with respect to the Einasto and NFW is not that
strong to assess that the isothermal profile has to be preferred.

Table 3 - Model parameters for intermediate spiral galaxy NGC 2403

The mass of the baryonic matter in the galaxy is 2.58-10° Mg [11]
Profiles P, £p,. 107 E ¥y E Or,y, kpe M+M , Mg n BIC
Burkert 207.94£10.16 2.7740.07 | (7.06+0.51)-10° - 1252
NFW 32.64+1.11 6.91+0.13 | (2.62+0.14)-10" - 764
1SO 521.34+22.83 0.84+0.02 (8.27+0.6)-10° - 842
Moore 15.66 +0.57 9.4140.18 | (3.79+0.21)-10" - 732
Einasto 4.35+0.43 9.43+0.48 | (3.76£0.56)-10" | 5.98+0.27 | 692

For NGC 2403 galaxy the BIC value is minimum for the Einasto profile and is maximum for the
Burkert profile. The mass obtained by the Einasto profile is one order of magnitude larger than the visible
mass.

— 28 ——
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Table 4 - Model parameters for unbarred spiral galaxy NGC 2976

The mass of the baryonic matter in the galaxy is 1.36- 10° Mg [11]
Profiles Po t §p0, 1073 % r, £ 5]"0 , kpc M+M , Mo n BIC
Burkert 273.17 £12.6 1.740.08 (2.14 £ 0.24)-10° - 126
NFW 0.77 £3.73 138.45+ 664.57 | (0.49+5.61)-10" - 174
1SO 238.66+11.52 1.07 +£0.05 (7.91+1.04)-10° : 129
Moore 0.05+2.1 758.54£3040.75| (0,06 +2.72)-10" : 202
Einasto 35.5+12.3 2.52+0.61 (4.39+£2.72)-10° | 1.1£0.3 | 128

For NGC 2976 galaxy the BIC value is minimum for the Burkert profile and is maximum for the
Moore profile. As before the small difference in the BIC with respect to the Einasto, isothermal and
Burkert profiles does not allow to assess which model is better (they are comparable with each other). For
this galaxy the mass inferred by the Burkert profile is ten times larger than the visible mass.

Table 5 - Model parameters for spiral galaxy NGC 3627

The mass of the baryonic matter in the galaxy is 8.18- 10 Mg [11]
Profiles Lo TPy 107 % 7, £ Or,, kpe M=EM, Mg n BIC
Burkert 2660 + 477 1.16£0.09 | (6.61+0.24)-10° : 53
NFW 1670 + 498 1.47+0.21 | (1.28+0.53)-10"° . 60
IS0 43938 +148672 0.13£0.22 | (2.57£7.79)-10" . 86
Moore 1087 +343 1.71£0.24 | (1.57+£0.69)-10" : 61
Einasto 147.4+9.9 271+0.11 | (2.21£0.25)-10° | 1.04+0.13 | 30

For NGC 3627 galaxy the BIC value is minimum for the Einasto profile and is maximum for the
isothermal profile. Here the mass inferred by the Einasto profile is one order of magnitude larger than the
visible mass.

Table 6 - Model parameters for spiral galaxy NGC 5585

The mass of the baryonic matter in the galaxy is 1.6 109 Mg [13]
Profiles o == 5p0, 1073 % r, £ 5]’0 , kpc M+M, Mo n BIC
Burkert 89.6+2.3 2.83+0.05 | (3.24+0.14)-10° - 38
NFW 6.02 +1.4 12.56+2.02 | (2.89+1.2)-10" - 76
IS0 90.5+ 4.5 1.52+0.05 | (8.57+0.82)-10° - 51
Moore 1.79 +£0.77 23.69+7.27 | (6.93+4.85)-10" - 81
Einasto 10.26 + 0.61 4.48+0.12 (7.3£0.6)-10° | 1.27+0.08 | 33

For NGC 5585 galaxy the BIC value is minimum for the Einasto profile and is maximum for the
Moore profile. Here as before the BIC is similar between the Einasto and Burkert models. The mass
inferred by the Einasto profile has the same order as the visible mass.
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Figure 2 - Rotation curves of galaxies and fitted models.
Left panel: galaxy DDO 154. Right panel: galaxy NGC 1560
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Figure 3 - Rotation curves of galaxies and fitted models.
Left panel: galaxy NGC2403. Right panel: galaxy NGC 2976
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Figure 4 - Rotation curves of galaxies and fitted models.
Left panel: galaxy NGC 3627. Right panel: galaxy NGC 5585.

In figures 2-4 the black thick points show observational data with their error bars for one dwarf and
five spiral galaxies, the green curves show the Burkert profile, the purple curves show the NFW profile,
the red curves show the isothermal profile, the orange curves show the Moore profile and the blue curves
show the Einasto profile (color online). The theoretical curves were obtained by the fitting procedure.
Using the method of least squares we calculated the numerical values of the scale radius and characteristic
density. In the case of the Einasto profile, the value of the Einasto index was also obtained. In the end we

calculated the mass of DM in the galaxies.
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Discussion and Conclusion

We have analyzed one dwarf galaxy and five spiral galaxies in this work. The complex structure of
galaxies was abandoned and the DM distribution was adopted to be spherical for a given galaxy. The
rotation curves constructed in this work have been compared with the analogous results in the literature for
galaxies NGC 2403, NGC 3627, NGC 2976, DDO 154 in Ref. [11], and for galaxies NGC 1560 and NGC
5585 in Refs. [12] and [13], respectively.

The model parameters were inferred from the observational data points by using
“NonLinearModelFit” command in the scientific software “Wolfram Mathematica 11”. The command
allows one to automatically conduct the fitting procedure for a given model and data points. As a result,
the total mass of DM was estimated in the considered galaxies and confronted with their luminous masses.
The DM mass, in many cases, is larger than the visible mass, as expected.

The Einasto model showed the best results in four cases (DDO154, NGC 2403, NGC 3627, NGC
5585), Burkert and Isothermical profiles showed good results for NGC 2976 and NGC 1560 galaxies,
respectively, as the BIC value was the lowest compared to other models. Unlike other models, the Einasto
model depends upon three parameters and one gets a better fit. Therefore, there is a higher compliance
with the observations. The NFW profile showed small deviations from the observed galaxies NGC 5585,
NGC 1560, NGC 2976. In other profiles we have no noticeable differences.

Overall, all models considered in this work showed good results, though in some cases not all the data
points were covered with the theoretical curves. These discrepancies can be caused by the fact that we
simply ignored the complex structure, the baryonic constituents in galaxies. If we took into account the
inner structure of galaxies as in Ref. [14] and constituents of the matter as in Ref [15], probably the fits
would be much better than the ones presented in this work.

Nevertheless there are still a plenty of open issues related to DM. Although one can observe indirectly
the presence of DM in any galaxy or clusters, we still do not know why the DM distribution is so different
from one galaxy to another. For example, the recent discovery of DM distribution in the Markarian galaxy
shows that DM is mainly concentrated in the core of the galaxy [16]. Another example shows a galaxy
with barely no DM [17].

The nature of DM particles still remains mystery, though there are some theoretical models predicting
the whole set of DM particles, see Refs. [3, 18] for details. The role of DM in the evolution of the universe
is yet to be understood.

It will be interesting to investigate other galaxies [19], taking into account their intricate structure, and
involving latest theoretical models. This issue will be addressed in future studies.
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APPENDIX
The rotation curve data points for galaxies NGC 2403, NGC 3627, NGC 2976, DDO 154 are given in

Ref. [11], and for galaxies NGC 1560, NGC 5585 are taken from [12] and [13], respectively.
In the observational data, the distance from the center to the point R is represented in angular

seconds. 1 angular second is equal to part of a degree. To convert an angular second into a

kiloparsec, one should use the following general formula:

R=a-1g(p) ©)
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where P is the specified distance in angular seconds, @ is the distance between our galaxy (Earth)
and the galaxy under consideration. We express ¢?  in radians. Finally for R we obtain:
T

R=a-te] 1.
& 3600 180" 7

(10)

Table 7 - The distance between Milky Way Galaxy (Earth) and the galaxy under consideration

Galaxies a , [kpc] References
DDO 154 4300 [11]
NGC 1560 3000 [12]
NGC 5585 6200 [13]
NGC 2403 3180 [20]
NGC 3627 10100 [21]
NGC 2976 3450 [22]
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KAPAHI'BI MATEPUSIHBIH OP TYPJII IPO®UJIBIEPIH 3EPTTEY

AHHOTAUMs. Op TYPJi TalaKTHKaJIapAaFel KapaHFbl MaTEPUSHBIH Maccachl TapalyblH Oaranay YIIiH oneduerte
Oenrini, keHiHeH naiinananpuiaTbia M3orepmai, Bypkept, HaBappo-®penk-Yaiit, Myp xoHe DitHacTo npoduibaepi
KonjaHbu1anbl. HBIOTOHHBIH TIpaBUTAIMA TEOPHACHl AyKbIMIbl TI'aJAKTUKAIBIK MAacCIITaOTaplIarbl ecenTeynepi
OpBIHZAY YLIH KYMBULABIPBUIABI. AJlyaH TYpPJi TalakTHKajdap/a KapaHfbl MaTepUsIHbIH Tapaiybl (yiecTipiniyi)
cepastblK €N YiFapbUIIbl )KOHE TalaKTHKaIapAblH KYPJeli KYpPbUIBIMBI, SFHU OJIAPbIH SAPOCHI, 11IKi )KOHE CBIPTKBI
OakIapsl, TUCKiIepl MEH ranojiapsl eckepiimeni. Teopusuiblk aifHay KHCHIKTaphl rajakTUKalap YLIH Oakbuiay
MOJIMETTepiMeH colikecTenaipiiai. EH kimi kBaaparrap ojici KeMEriMEH Y/TUIepAiH Hapamerpiiepi Oakpuiay
JIEpEKTEpiHEH eCeTITeNIN aIbIH bl )KOHE HEFYPIIBIM ColKeC KeJeTiH YITiHi aHbIKTay yuIiH baiiectik MH(bopManusibK
Kpurepuit kongansuiasl. Kapanrbl MaTepHsHBIH Maccachl OapiiblK KepCeTLIreH Nmpoduibiep apKbUIbl ap Jepdec
TaJlakTUKa YIIiH eCeNTeNiHIi >KOHEe TaJaKTHKalapIblH KOpiHEeTiH MaccachiMEH CalBICTHIphUIaNbl. HoTmkenep
oneOueTTeri MAIIMETTEPIMEH COlKec Keei.

Tyiiin ce3aep: ramakTUKaiap, aifHaTy KUCHIKTaphl, KAPAHFBl MaTEPHI.
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HCCJIEJJOBAHUE PA3JIMYHBIX ITIPO®UJIEN TEMHOM MATEPUH

AnHoTanus. Pazniunele, oOLENpUHATHIE U IIHUPOKO UCIIOJIb3yeMble (PEHOMEHOJIOTHYECKUE MPOPHIN TEMHON
MaTepuu, Takue Kak IceBlou3oTepMuyeckas cdepa, npodpunu bypkepra, Hasappo-®penka-Yaiita, Mypa u
OHHACcTO, MCHONB3YHOTCA Ul OLEHKU pacHpefeNeHHs Macchl TEMHOW MaTepuM B pPa3lIMYHbIX TallaKTHKaXx.
HproToHOBCKasl TpaBUTalUs MCHOJIB3YETCS JUISL BHIOJHEHMS BHIYMCICHUH B OOJBLIMX TaJJaKTHYECKUX Maciuradax.
Pacnipenenenne TeMHOI MaTepyy B pa3IMUHBIX TUMAX TAIAKTHK IPEAIIONAraeTcsi chepruyeckuM 0e3 yueTa CIIoKHON
CTPYKTYpPBI TAJAKTHK, TAKUX KaK WX spa, BHYTPEHHUE W BHEIIHUE OAJIIKH, TUCKH M rano. TeopeTHdeckue KpruBbIe
BPAIIEHUs] CONOCTABICHBl C HAOMIONCHUSAMHU JUIA KaXZoH ramakTuku. IlocpencTBom anropuTMa HauMEHBIIHX
KBaZ[paToOB MapaMeTphl MOJIENM BBIBOJIATCA W3 JAHHBIX HaOmoneHud u moaseprarorcsi baiiecoBckomy
UH()OPMALMOHHOMY KPUTEPHUIO, KOTOPBIH OIpeaesseT 6osee NIpeANOYTUTENbHYI0 MOeNb. Macchl TEMHOH MaTepun
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PacCUNTHIBAIOTCS JUTS KAXKIOW TaaKTHKH CO BCEMH NEPEYNCIICHHBIMHU NMPOQUISIMH U CPaBHHUBAIOTCS C BHIUMbBIMU
MaccaMH TalakTHK. Pe3yIpTaThl cornacyroTcesi ¢ JaHHBIMU B JIUTEPATypE.
Ki1roueBble ¢J10Ba: TaIaKTHKY, KPUBBIE BPALIECHHS, TEMHAsI MaTEpPHsL.
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OPTIMIZATION OF THE SOLID FUEL COMBUSTION
PROCESS IN COMBUSTION CHAMBERS IN ORDER
TO REDUCE HARMFUL EMISSIONS

Abstract. The methods of numerical simulation are used to study the processes of heat and mass transfer in the
combustion chamber of an operating coal-burning Kazakhstan thermal power plant. Computational experiments were
performed on the combustion of high-ash Karaganda coal in the combustion chamber of the BKZ-75 boiler
(Shakhtinsk, Karaganda region). As a result of numerical simulation of the combustion processes, the distributions of
the total velocity vector, temperature fields, concentration fields of nitrogen oxides NO over the entire volume of the
combustion chamber and at its exit were obtained. A comparative analysis of the characteristics of heat and mass
transfer processes for the two studied modes of supplying fuel to the combustion chamber through burner devices is
given for the direct-flow method of supplying the mixture when the burners are located on opposite side walls and
the vortex method of supplying the mixture when the burners are installed at a 30-degree angle from the center of
symmetry of the boiler. It is shown that the vortex method of supplying air mixtures allows optimizing the
combustion of high-ash coal, since in this case there is an increase in temperature in the core of the torch and a
decrease in it at the exit from the combustion chamber, which has a significant effect on the chemical processes of
the formation of combustion products. The average value of the concentration of nitrogen oxide NO at the outlet of
the combustion chamber decreases when using burner devices with a swirl of the mixture flow and conforms to
norms the maximum permissible concentration.

Key words. numerical simulation, solid fuel, combustion chamber, direct-flow and vortex methods of supplying
air mixtures, velocity, temperature, nitrogen oxides.

Introduction

The development of the fuel and energy complex and energy is one of the most important foundations
for the development of all modern material production. Countries with the necessary resources and the
ability to develop long-term plans for their use receive undeniable competitive advantages. The issue of
choice, operation, and, first of all, the creation of new, highly efficient energy and resource-saving
technologies becomes relevant for the heat power industry [1-2].

In this paper, using modern 3D modeling technologies [3-11], a comprehensive study of the thermal
processes and aerodynamic characteristics of the combustion chamber of an existing Kazakhstan energy
facility (Shakhtinskaya TPP, Kazakhstan) is carried out.. Based on the numerical solution of the system of
convective heat and mass transfer equations [12-13], taking into account the kinetics of chemical
reactions, two-phase flow, nonlinear effects of convective and radioactive heat transfer, and 3D modeling
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methods, aerodynamic, thermal, and concentration characteristics are obtained over the entire volume of
the combustion chamber, in its main sections and at the exit [14-21].

A comparative analysis of the characteristics of heat and mass transfer processes for the two studied
modes of supplying fuel to the combustion chamber through burner devices is given for the direct-flow
method of supplying the mixture when the burners are located on opposite side walls and the vortex
method of supplying the mixture when the burners are installed at a 30° angle from the center of symmetry
of the boiler.

The results of the studies allow us to develop appropriate technological solutions for installing burner
devices (direct-flow or vortex) in the combustion chamber under study and to optimize the process of
burning high-ash Kazakhstan coal in order to minimize harmful emissions into the atmosphere.

2. Description of the combustion chamber for conducting computational experiments

For conducting numerical experiments, the combustion chamber of the BKZ-75 boiler was installed at
the Shakhtinskaya TPP (Shakhtinsk, Kazakhstan), in which Karaganda coal with an ash content of 35.1%
is burned. Steam boiler BKZ-75 - vertically water-tube, productivity 75 t/h (51.45 Gceal/h) [22-27]. The
boiler is equipped with four pulverized coal burners installed in two burners from the front and from the
rear in one tier. Figure 1 shows the finite-difference grid for conducting computational experiments and
the design of various burner devices (direct-flow and vortex) of the combustion chamber of the BKZ-75
boiler.

a) c)

Figure 1 - Finite-difference grid of the combustion chamber of the boiler BKZ-75 of the Shakhtinskaya TPP
and designs of burner devices of the combustion chamber of the boiler
BKZ-75: a) straight-through burners; b) burners with a spin of the flow of the air mix

To carry out computational experiments in the combustion chamber of the BKZ-75 boiler, two cases
were investigated 1) a direct-flow method of supplying air mixtures — burners are located on opposite side
walls; 2) the vortex method of supplying the mixture - burners with a swirl angle of the mixture flow and
tilting them to the center of symmetry of the boiler by 30°.

3. Results

This work presents the results of computational experiments, the distribution of the full velocity
vector, the temperature and concentration fields of nitrogen oxide NO for two cases of fuel supply to the
combustion chamber of the BKZ-75 boiler (direct-flow and vortex). Figure 2 shows the distribution of the
total velocity vector in longitudinal sections of the combustion chamber of the BKZ-75 boiler. We see that
in the direct-flow method of supplying air mixtures, the flows, colliding in the center at a right angle, are
cut in the region of the cold funnel and towards the exit from the combustion chamber, with the formation
of a vortex flow of lower intensity. With the vortex method of supplying the air mixture, four swirling
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flows in the region of the belt of the burner devices guiding from the burners collide with each other in the
central part of the combustion chamber at an angle of 30°. Then, having united in two main streams, they
are dissected, forming vortex flows of flow more in the horizontal region of the combustion chamber.
High stability of the vortex flow (vortex) position increases the residence time of coal dust in the
combustion zone will significantly reduce the formation of the concentration of harmful substances.
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Figure 2. The distribution of the field of the full velocity vector in longitudinal sections (x=3)
of the combustion chamber of the boiler BKZ-75:
a) direct-flow method of supplying air mixture; b) vortex method of supplying air mixture
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Figure 3 - The distribution of the field of the temperature in longitudinal sections (x=3)
of the combustion chamber of the boiler BKZ-75:
a) direct-flow method of supplying air mixture; b) vortex method of supplying air mixture
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Figure 3 illustrates the temperature field in the longitudinal sections of the combustion chamber of the
BKZ-75 boiler for the two studied modes of supply of air mixture (direct-flow and vortex). We see that
the temperature has maximum values in an area close to the location of the burner devices. With the
direct-flow method of supplying the air mixture, the average temperature in the longitudinal section (x=3)
of the combustion chamber of the BKZ-75 boiler is 903.64°C, and in the case of a vortex feed of a
mixture, the temperature value increases and amounts to 967.22°C. This is due to the vortex nature of the
flow, providing maximum convective transport and an increase in the residence time of coal particles in
the combustion chamber of the BKZ-75 boiler.

t,C
1400
1200 .
1000
800
600

400
200 -

0 T T T T T T T T
0 2 4 6 8 10 12 14 16 zm

Figure 4 - Temperature distribution along the height of the combustion chamber the BKZ-75 boiler with: 1— direct-flow method of
supplying air mixture; 2 — vortex method of supplying air mixture; @ - experimental data at TPPs [28]; A — is theoretical values
obtained by the method of thermal calculation (CBTI — Central Boiler-and-Turbine Institute) [29]

Figure 4 shows a comparative analysis of the distribution of the average temperature in the cross
section over the height of the combustion chamber for the two studied modes of supply of air mixture
(direct-flow and vortex). In the case of a vortex feed of an air mixture, an increase in the extent of the zone
of maximum temperatures is observed. The minimum in the curves associated with the low temperature of
the air mixture entering the combustion chamber through the burners. An increase in the temperature in
the core of the flame and a decrease in its output exerts a significant effect on the chemical processes of
the formation of combustion products. The temperature at the outlet of the combustion chamber is
confirmed by its theoretical value calculated by the CBTI method for direct-flow supply of air mixture
[29].

Distributions of nitrogen oxide NO concentrations in different sections of the combustion chamber are
presented in the Figures 5-6.
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Figure 5 - Distribution of nitrogen oxide NO area in longitudinal sections (x=3)
of the combustion chamber the BKZ-75 boiler with:
a) direct-flow method of supplying air mixture; b) vortex method of supplying air mixture
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Figure 6 - Distribution of nitrogen oxide NO at the outlet of the combustion chamber the boiler BKZ-75 with:
a) direct-flow method of supplying air mixture; b) vortex method of supplying air mixture

As can be seen from the figures, the zone of maximum formation of nitrogen oxide NO is the region
of high temperatures and intense vortex flow. Intensive mixing of fuel and oxidizing agent, created by
turbulent flows of injected air mixture near the burners, as well as high temperature in the torch core,
create favorable conditions for the formation of nitrogen oxides. The average value of the concentrations
of nitrogen oxide NO in this region is equal to the direct-flow method of supplying air mixture — 540.53
mg/nm’ (Figure 5a), and with a vortex method of supplying air mixtures — 497.44 mg/nm’ (Figure 5b).
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Figure 7 - Distribution the concentration of nitrogen oxide NO at the outlet
of the combustion chamber the boiler BKZ-75 with: 1 - direct-flow method of supplying air mixture
nitrogen oxide NO; 2 - vortex method of supplying air mixture nitrogen oxide NO

However, towards the exit from the combustion chamber (Figures 6-7), a uniform decrease in the NO
concentration is observed, since this region contains less oxygen and a fuel component. In addition, in the
case of using burner devices with swirling of the mixture flow, the temperature along the height of the
combustion chamber monotonously decreases, as a result of which the rate of formation of nitrogen oxide
NO. At the exit from the combustion chamber, the average value of the concentration of nitrogen oxide
NO with a direct-flow method of supplying air mixture is 368.08 mg/nm’ (Figure 6a and 7a, curve 1), and
with vortex burner devices — 286.56 mg/nm’ (Figure 6b and 7b, curve 2), that on 81 mg/nm’ less.
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The results indicate the advantages of choosing a vortex method of supplying air mixtures to optimize
the combustion of high-ash coal in the combustions of power plants and reduce harmful dust and gas
emissions into the environment.

Conclusion

The methods of numerical simulation are used to study the processes of heat and mass transfer in the
combustion chamber of an active coal-burning Kazakhstan TPP. Computational experiments were
performed on the combustion of high-ash Karaganda coal in the combustion chamber of the BKZ-75
boiler (Shakhtinsk, Karaganda region).

As a result of the numerical simulation of the combustion processes during the combustion of high-
ash coal, the distributions of the total velocity vector, temperature fields, concentration fields of nitrogen
oxides NO over the entire volume of the combustion chamber of the boiler and at its exit were obtained.

A comparative analysis of the characteristics of heat and mass transfer processes for the two studied
modes of supplying fuel to the combustion chamber through burners with a direct-flow method of
supplying the mixture when the burners are located on opposite side walls and a vortex method (swirling
flow) of the mixture supplying when the burners are installed with their slope to the center of symmetry of
the boiler is presented 30°.

The vortex method of supplying the mixture allows to optimize the combustion of high-ash coal, due
to the circulation movement, the residence time of the fuel particles in the combustion chamber increases,
there is an increase in temperature in the flame core and its decrease at the exit of the combustion
chamber, which has a significant effect on the chemical processes of the formation of combustion
products. In this case, the average value of the concentration of nitrogen oxide NO when using burner
devices with a swirl of the mixture flow at the outlet of the combustion chamber decreases and
corresponds to the norms of maximum permissible concentration.
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3USTHBI KAJJIBIKTAPIBI A3AMTY MAKCATBIHJIA 5)KAHY KAMEPACBIHJIA
KATTBI OTBIH/IbI )KAFY IPOLIECIH OHTAMJIAH/IBIPY

Annoranus. JKOO-HbIH Ka3aKCTaHIBIK KOJIAHBICTAFbI KOMIpP KaFaThIH JKaHY KaMepachIH/Ia )KbLUTY JKOHE Macca
aJMacybIH CaHJIBIK Mojeibaey oamictepimer 3eprrenai. bK3-75 (Illaxtunck, Kaparanasl 00JBICkI) Ka3aHIbIFBIHBIH
’aHy KamepacblHJa orapbl Kynni Kaparanipl kemipiH jkaFy Ke3iHIe ecenrey TaxipuOenepi xypriziuai. JKany
MPOLIECTEPIH CaHJBIK MOJIEINBACY/IIH HOTIIKECIHAE MbIHAJIAP aJBIHbI: KBULAAMIBIK BEKTOPBIHBIH TOJBIK Tapaiysbl,
Temreparypaiblk epic, NO a30T OKCHATEpiHIH KOHIEHTPALMSUIBIK OpICTEpiHIH JXKaHy KaMmepachlHbIH OapJbIK
KOJIEMIH/IE JKOHE OHBIH IIBIFBICHIHIA. JKaHy KaMepachblHa OTTBHIK KYPBUIFBUIAP apKbUIbI JKaHApMai KeTKI3yIiH eKi
PeKMMI  OKBUIy OHE Macca ajiMacy IPOLECTEepiHIH CHUIaTTaMallapblHa CajibICTHIPMAbl YLIIH 3€pPTTENiN Tajiaay
YCHIHBUIFAH: OTTHIKTAp Kapama-Kapchl jKaK KaObIprajaphlHAa OpHATACKaH Ke3[le aya KOCMAChIH Oepy/iH Tikeleh
o/ici KoHE KBI3JBIPFBILITAD ©31epiHiH rpanycbiMer 30 rpamycka OedimuesreH Kyie OpHAThUIFaH Ke3Jle aya
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KOCTIaChIH OepyaiH KyHbIHIbI dJici ychiHbUIFaH. KyHbIHIBI aya KOCHAachlH Oepy ofici >KOFapbl KYJIi KeMipAaiH
KaHYbIH OHTAWIaHABIPYFa MYMKIHAIK Oepeni, eiiTkeHi Oyn jkaFiaiiia amay e3eriHieri TemIieparypaHbIH
KOFapblIaybl JKOHE JKaHy KaMepachlHaH IIBIKKAH Ke3Jle OHBIH TeMeHJeyl Oaiikanmaisl, jkaHy OHIMIEpiHiH maiina
0O0JTyBIHBIH XUMUSUIBIK IPOLIECTEPiHE alTapiibIKTai ocep ereai. A30T okcui NO KOHIEHTPALUSICHIHBIH OpTallla MOHI
’KaHy KaMepachIHbIH IIBIFBICHIH/IAFbl KOCTIAHBIH aFbIHBIHBIH CEPIUTICIMEH KbI3BIPFhINI KYPbUIFbUIAPAbI MaiifanaHy
Ke3inzie Temeneitni sxxone [1OK coiikec kenei.

Tyiiin ce3nep. CanablK MoJeney, KaTThl OThIH, XXaHy KaMepachl, aya KOCIHajJapblH OepyIiH TiKeJel aFbIHIbI
KOHE KYHBIHIbI dJIiCTepI, XKbUIIAMIBIK, TEMIIEpaTypa, a30T OKCHATEPI
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B.IO. Makcnmos’, C.A. Beaerenosa’, A.O. kumanosaz

'Yenrckuit TeXHUIECKHIT yauepcureT B [Ipare, ¢pakynbreT AUHAMUKY XHKOCTH U TEPMOIMHAMUKH,
r.IIpara, Yemckas Pecny6nmka;
*Kazaxcknit HarponanpHblit YHuBepcuter umenu anb-Dapadbu, GU3NKo-TeXHHUECKUi (akynbTeT,
r. Anmatsl, Kazaxcran;
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OITUMM3AINUA ITPOLNECCA C)KMT'AHUSA TBEPJOI'O TOIIVIMBA
B TOITIOYHBIX KAMEPAX C HEJIbIO CHU’)KEHHWA BPE/ITHBIX BbIBPOCOB

AHHoTauusi. MeTomaMU YHCIIEHHOTO MOJCIMPOBAHHUSA HCCIEAOBAHBl MPOIECCH TEIIOMACCOIIEpEeHoca B
TOIIOYHOM Kamepe MeHCTBYIOIIEH yrieckuraromer KazaxcraHckod TOIl. BwImomHEHB BBIYHUCIUTEIHHBIE
9KCHEPUMEHTHI 10 CXKUTAHMIO BBICOKO30JIBHOTO KaparaHAWHCKOTO YISl B Kamepe cropanus kotia BK3-75 (r.
Maxtuack, Kaparangmackas oOmacts). B pesynprare mpoBemeHHs YHUCIECHHOTO MOJICTUPOBAHUS TOIOYHBIX
MpOIleCCOB OBUIM IONyYCHBI: pAaCHpeleNieHHss BEKTOpa IIONHOM CKOPOCTH, TEMIEepaTypHbIE TIIOJIS, IOJS
KOHIIEHTpaluii okcumoB a3zora NO mo BceMy 00bEeMy TOIOYHOW KaMepbl W Ha BbIxone w3 Hee. [IperncraBieH
CPaBHUTENBHBIN aHAJIN3 XapaKTEPUCTUK MPOIECCOB TEITIOMACCONEPEHOca IS ABYX HCCIEAYEMBIX PEeKUMOB TOAAYN
TOIUTMBA B KaMepy CrOpaHUs 4epe3 TOpesOYHbIe YCTPOICTBA: MPSIMOTOYHBIM CIIOCOO MOZAadé a’poOCMECH, Korna
TOpPENIKA PaCIoIOKEHbl Ha MMPOTHBOIMOJIOKHBIX OOKOBBIX CTEHKAaX M BHUXPEBOH CIOCOO MOJAYM a’pocMecH, KOrjaa
TOPETIKM YCTaHOBJIEHBI C HAaKIOHOM HX K IEHTPY cuMMeTpuH korina Ha 30 rpamycoB. IlokazaHo, 4To BHXpPEBOit
crnoco0 MomayM a’poCMECH TO3BOJISET ONTUMHU3UPOBATH IPOIECC CKUTAHHS BBICOKO30JBHOTO YIS, MMOCKOJBKY B
3TOM ciydae HaOmIomaeTcs yBEIWUYCHHE TEMIIEpaTypsl B Aape ¢akena W CHIDKCHHE €€ Ha BBIXOJE W3 KaMepbl
CrOpaHus, YTO OKAa3bIBAeT CYIICCTBEHHOE BIMSHHE HAa XMMHYECKHE MPOIECCH 00pa30BaHUS MPOAYKTOB TOPECHUS.
CpenHee 3HaueHHWE KOHIGHTpanuu okcruia a3ota NO Ha BBIXOJAE W3 TOIOYHOH KaMmephl YMEHBIIAETCS TpPH
HCTIOJIH30BaHUH TOPEIIOYHBIX YCTPOHCTB € 3aKPYTKOHM MOTOKA a3pOCMECH U COOTBeTcTBYeT HopMam I1/IK.

KioueBble cioBa. UncineHHOe MOJAEIHPOBaHHE, TBEPAOE TOIUIMBO, KaMepa CrOpaHHs, MPSMOTOYHBIA W
BHUXPEBOH CIIOCOOBI IOJa9! a3POCMECH, CKOPOCTh, TEMITEPaTypa, OKCHIIBI a30Ta.
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FERMION THEORY OF COLLECTIVE STATES OF NUCLEI,
ITS APPLICATION TO THE STRUCTURE OF REAL SYSTEMS

Abstract. Based on the nucleon-pair shell model, in which the fermionic space is cut by the "realistic" SD-
operators by the generalized senority method, the microscopic structure of the collective states of the nuclei of the
average atomic weight is studied. In this case, the effects of splitting of single-particle levels on the collective-pair
structure of the system are taken into account. To solve such a multiparticle problem, we use the generalized
quasispin method and double tensors, which facilitate the calculation of the matrix elements of pair interactions of
nucleons. The total Hamiltonian is diagonalized exactly in fermionic space without applying the procedure for
mapping fermion operators into bosonic operators. The parameters of the interacting boson model are calculated on
the basis of the permuted fermion approach. The theory is applied to the study of the properties of the collective
states of even isotopes of ruthenium with N = 58-66. The spectrum of low-energy states is also calculated for the
probabilities of E2 transitions in them and they are compared with the available experimental data.

I. Introduction

The low-energy collective states of the nuclei of medium and heavy atomic nuclei are well described
by the interacting boson model (IBM) [1-4]. The parameters of such a phenomenological theory are
usually chosen from comparison with experimental data, and they smoothly change with an increase in the
number of nucleons in the isotopes of systems.

On the other hand, the observed changes in the parameters of the IBM model as a function of N and Z
are in good agreement with the first approximation of the approach that takes into account the severity
schemes in interacting fermion systems [5-7].Attempts were also made to substantiate the IBM by
calculating model parameters from detailed microscopic approaches. The description of collective states in
terms of fermion degrees of freedom is an interesting and important problem in the theory of nuclear
structure.But because of the difficulty of carrying out numerical calculations in a huge shell-model space
for nuclei with a sufficiently large number of particles, we have to use some types of truncating schemes
for the fermion space.In many cases, the so-called SD —pair circumcision of the enormous fermion-shell
space is used, however, difficulties remain regarding the application of “realistic” SD —nucleated pairs as
building blocks in the model [8-11].To overcome such obstacles in the microscopic calculations, the
parameters of the IBMare determined by the method of mapping the collective shell space into the bosonic
one, and then systematic calculations are carried out in the bosonic space. The Ohtsuka-Arima-Yakello
(OAY) map [12,13] based on the generalized seniority scheme was used most of all [14].

In this work, we use the nucleon — pair shell model in which the fermion space is cut off by ” realistic
" SD — pair operators taking into account the effect of splitting of single-particle levels into a collective —
pair structure of the system.Also here, the full Hamiltonian is diagonalized exactly in the fermion space
with generalized senority, without using the mapping procedure, which gives a fermion pattern of
collective excitations of nuclear states. The used approach to the study of collective states goes into the so-
called fermion-dynamic symmetric model (FDSM) [15-24], in the case of neglecting splittings of one-
particle states that affect the collectivity of levels.
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In this work, systematic calculations of the parameters of the model of interacting bosons are carried
out, as applied to the study of the properties of low-energy states of even Ru isotopes with neutron
numbers N = 58-66. Selection of the nuclei due to the fact that, firstly, they generalized quantum number
seniority (quasi- spin generalized) is most purely secondly due to prostate configurations of excited
nuclear states application of this method is simple and clear. In addition to the spectra of nuclei, the
behavior of the wave functions of states is also discussed by calculating the ratios B (E2) and o (E2 / M1)
for lower states. The obtained values are compared with known experimental data.

II.Generalized quasispin space and pair interaction of fermions

The formalism of the generalized quasi-spin (generalized senority) [3, 4] is used, which allows one to
exactly solve a multi-pair fermion problem with a fixed number of particles with given internuclone
forces.It introduces a double tensor in the usual and generalized seniority spaces, by means of which the
eigenfunctions and eigenvalues of numerous pairwise operators are easily found.Generalized quasispin
fermion space we introduce via operators:

i 1 . i N -1
s+=zjajsi,s_=zja—jsz, so=zjsg=( )/2, (2.1)

in which a; — are coefficients reflecting the amplitudes of the probability of population of the orbit j and
they are normalized:

The quasi-spin operators of the shell configuration j™, satisfy the usual commutation relations, which
the angular momentum operators obey:
§] = VAA*(jjo0) = Va2 (jm, jm, | 00)a’, a’, , SI = VAA(jj00),

53 =15 (W = 29) =3 @y () - 00 2

In addition, double tensors are introduced in the spaces of both quasispins with the moment A, as well
as in the usual with tensors of rank k and their corresponding Z-projections s and q.For the case when k is
even, they are written in the form:

TR () = A* (ijka), TR (i) = AGjka),
Tog O Gi) = UGjke) + /9/2 5(k,0). 2.3)

Here they are double tensors; in the usual space of rank k, and simultaneously a tensor of rank 1 in a
quasispin space. Any single-particle operator is proportional to the double tensor of the first rank in a
quasispin space, and in the ordinary one it is proportional to the k-rank tensor T %) (jj).

The reduced matrix element of the single-particle operator of n particles is written through a matrix of
single particles with senority 9.

. . v -1 [(n=942)(20-n—-9+2) . . -
G0l 0y == [P G 0qy |5 £ 00 ~ 2,00 @)

A completely similar method can be used to simplify the calculation of two-particle matrix elements
using similar reduction formulas. Usingthedoubletensors (2.3), thepairinginteraction operator is written:

V=3 V2] +161(1j2j3ja) [AT (ij2) X A(f3]'4)](()0) (2.5)

G = ( j1i2)( 1314)/4 < jij2 IV 1jzja] >,

can also be expressed in terms of double tensor

—— Y4 ——
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2.0)
V=-%,J2]+1G [TjS.l’D x TP (111 = 1140) = TO + 7O + 7@ (2.6)
00
@ _ _1 _ Wn _pan ]
For example, T® = 25,76, |15 =150, = v - )R, 2.7)

Here, for example, for = 0: Fy = —%Z,(Z} + 1)G;.
In additiononlyT ) can change senority 9 by 9’ =9 + 2, 9 + 4, then according to the Wigner-Eckart
theorem the reduction formula follows:

< M|V > = % < j29aJ|T®|j20'a) > (2.8)

where f;(n)=( (22 — 92 (n — )0 (22 — 9")> (n — £2))are the Clebsch-Gordan coefficients.

Matrix elements that are diagonal in senority include the contributions of all three tensors. T (0(1:(2),
which are discussed in detail in the works[4,9].

Operators of generalized quasi-spin(2.1) obey also the usual commutation ratios, however, remain
non-Hermitian:(S_)" # S,.

[S..5_]=25,, [S,,S,]=+2S. (2.9)
All Lie groups (2.1) for all values of ajare isomorphic to each other. Therefore, for any set of
operators (2.1), we can introduce the complete generalized quasispin operator: S = S, S_ + S2—S,,.
The state vectors of the quasi-spin operators S and Spare determined by the quantum numbers s and

Sp, which are associated with the quantum number seniority and the total number of nucleons N in the
form:

S =2(02 —9)andS, = (N — ). (2.10)
Then using commutation relations between S, Sywe have:
S_|s ,S0.4 >= const|s, so—1,q >,
S+|s, So,q >= const|s, So+1,q >, (2.11)
S_|s,s0, = —s,q >=0.

Thus, according to the quantum number of the generalized quasi-spin s, it is possible to classify the
states of the system by the ratio of the rotation of the system in the quasispin space.Therefore, this method
is one of the easiest ways to solve many-particle problems.Many-particle matrix elements are expressed in
terms of two-particle with the help of reduction formulas and commutation relations between tensors.For
example, Hamiltonian pairing interaction

Hg = eN -GS, S_ (2.11)
is diagonal in the representation of a generalized seniority.

Wave functions of system states with quantum numbers

s, JM > , therefore, are expressed in form:

1

) Shrs,—s M > (2.12)

|5, so/M >= {n!(n—ﬁ)!

wheren = (N —9)/2 -the number of paired particles.

Now we consider a many-particle problem in the space of a generalized quasispin with an arbitrary
pair interaction operator. The full Hamiltonian, in this case, is conveniently divided into two parts,
selecting from it the pairing interaction Hs in the generalized quasispin representation: / = H_+W

,where W-operator, expressing the rest of the interaction of particles, but diagonal in the representation of
generalized quasispin s
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JiJ2J3J4
Then the eigenvalue problem for the complete Hamiltonian H, which is diagonal in the s-
representation, reduces to solving the equation:

s,S0>:E(n:s+so,v:Q—2S,qu,soq>0. (2.14)
The total energy of the system is also divided into two parts.
E(n,v,q):E(n:2n+v,v)+E'(n,v,q), (2.15)

where, Es is the eigenvalues of the pairing part of the Hamiltonian Hs.
Let us find the conditions under which the full Hamiltonian H is diagonal in the representation of a
generalized quasispin. For this, it is necessary that functions (2.14) be eigenfunctions of the operator W:

s so,q> E(n 12 q)‘s so,q> (2.16)
This equation can be reduced to several easily solvable, independent of n equations. Forthispurpose,
considerthecommutator:

v.s.]= 22<11]2‘V‘13]4> (ijIM) QJ}C?]353A(;/\/_ ) e T (s )+ ()jﬁj“*Mog;le(j}j“)}

T, jj' =(2 /1+5]‘_]_‘)ZZ jjm—m'|JM)aj*.mc7j,m., 2.17)

mm

where, single-particle operator satisfying the relations:

i (') s |=26 4, (ji'om). (2.18)

This operator breaks a pair of particles in the S +|0> state and puts them into the excited state

A, ( j]"JM ) O> In addition, we introduce the operator of the creation of unpaired particles v with a

common angular momentum J:

0" (v,JM ) 0) = Z;/ “(j,JM ) 0). (2.19)

From the normalization condition of the wave functions, we have: 3" (2 ' =1.
Then equation (2.16) can be rewritten in the form: j
w(S,)' 0" (v,JM)0)=E (n,v,q)0" (v,JM ) 0). (2.20)
Expression (2.19) will be satisfied, if only the equalities hold:
[.5. 10" (v, n)|= a(v,)5.0" (v, Im),
W' (v,JM)0) = E (n,v,q)0" (v, JM)0),

E'(n,v,q)z E'(n,v,q)-i- n/”t(v,J).

As a result, the condition of diagonalization of the complete Hamiltonian H = H_+W in the s-
representation reduces to solving the system of equations

— 46 ——
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HS|0)=£50),

(s ]s]=2ds.f,
HOWJIM0 =HvJ)0 (nJM0), (2.22)
[[H, slo (V,JM] (G- AnJ))S.O(vJM,

where, E, =S (N =2,v=0=2-GQ.).

The hollow energy of the system is determined by equality (2.15). In the case of the invariance of W
with respect to its rotation in the s-representation, the equality ﬂ(v, J ) = Omust be fulfilled.

Thus, the solution of the problem with the full Hamiltonian H leads to the lifting of the degeneracy of
levels by the angular momentum J in multiplets characterized by a quantum number of generalized
senority v whose positions linearly depend on the number of pairs in the system.

I11. Fermion structure of collective states of even ruthenium isotopes

The stated microscopic method for calculating the collective state of nuclei is applied to the study of
low-energy states of even ruthenium isotopes with atomic weights A = 100-106.

The single-particle functions of a symmetric harmonic oscillator are taken as the basis of the
calculations. The potential of the nucleon-nucleon interaction is selected in the form:

V = (U, + Usttg + UrS12)f(r,19) + Ug (3.1)

where,U,,, Us, Ur—parameters ofwigner, singlet and tensor forces,mgand S;,- operators singlet and tensor
projection n.Radial force dependencef (r, ry)selected as Gauss potential,U; -Coulomb potential. The full
potential of the pair interaction of nucleons is equal to:

V = Vo + Vo + Vi

As the core of this nuclei in protons and neutrons states is taken the low energy states of the strontium
nucleus with Z = 38 and N = 50 [10].The proton shell of the strontium nucleus is completed by filling the
2P 3/2 level.

The distance between this overhead and free shell 2P; ;, of order 3 MeV. Then the shell 2P;,can be

consideredsemimagic. As a single-particle proton states can be taken, the lower state **Y: the binding
energy of which is:epl/2 = —7,07 MeV, Eg/2 = —6,16MeV.

As single-particle neutron states, taken thehole states of 1335 in MeV:

&n = 0(d3/2); 0,24(hy11/2), 0,33(51/2), 1:66(d3/2), 2334(97/2)- [11]

With the above experimental data on single-particle states of near magic nuclei Z = 38, N =
S0realizethe corresponding choices of the parameters of paired interactions of valence nucleons.The
parameters of pair interactions of nucleons are determined from the description of experimental spectra of
even Ru isotopes.

The depth of the proton-proton interaction Vpp should vary slowly in nuclear isotopes, but differ from
each other by a small amount. In this paper, they were chosen the same for all isotopes and equal tothe
amplitude of the tensor interaction was considered negligible. The selected parameters of the nn and np
interactions are shown in Table 1.These values turned out to be close to the values obtained in [12], for
heavy nuclei.They vary with the number of neutrons monotonously and slowly. In addition, V,,, > V;,, for
all isotopes.This is due to the fact that the single-particle energies splinter for protons slightly more than
for neutron holes. The table shows that the depth of the neutron-proton interaction is also somewhat
greater for all isotopes and it slowly decreases with a decrease in the number of neutrons.
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U U: Uy U
100p,, 22 -16 30 24
102py, 19 -14 27 22
104py, 17 11 24 -19
106py, -15 -10 22 17
108y, 12 -8 220 -14

They computed the entire low-lying spectrum of even ruthenium isotopes with N = 58, 60, 62, 64, 66.
The obtained energy values of the levels of these nuclei are compared with their experimental data, which
are listed in Table 2.

100p,, 102p,, 104p,, 106p,, 108p,,
SAnpa
Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

0f 0 0 0 0 0 0 0 0 0 0
27 0,54 0,52 0,48 0,46 0,36 0,35 0,27 0,25 0,24 0,23
4f 1,23 1,18 1,11 1,09 0,89 0,81 0,71 0,66 0,67 0,61
67 2,08 1,97 1,87 1,72 1,56 1,45 1,30 1,19 1,22 1,11
87 3,06 2,80 2,70 2,51 2,32 2,13 1,97 1,76 - 1,61
10f 4,09 3,56 3,43 3,15 3,11 2,91 - 2,46 - 2,13
07 1,13 1,05 0,94 1,01 0,99 0,90 0,99 0,91 1,09 1,05
2% 1,87 1,69 1,58 1,45 1,52 1,37 1,39 1,29 1,25 1,12
2, 1,36 1,22 1,10 1,02 0,89 0,75 0,79 0,81 0,71 0,80
3 1,88 1,65 1,52 1,41 1,24 1,04 1,09 0,94 0,97 0,88
4, - 1,24 1,80 1,34 1,50 1,35 - 1,29 1,18 1,01
5; - 1,89 2,22 1,96 1,87 1,59 - 1,32 1,49 1,18

The choice of these nuclei for research is primarily due to the fact that their low-energy states
manifest themselves most purely in the presentation of generalized seniority, as noted in [4, 12]. It should
be noted that there is a good agreement between the calculated values of E and the experiment for states
with small angular values),

Table 3 - Relationships of E2 transitions between states in Ru nuclei.

Ji =y 100R,, 102, 104p,, 106p,, 108g,,
Jli'=Jf!
Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor.

4124 1,50 1,47 1,6 1,5 1,43 1,44 - 1,75 - 1,83
2, -0, +0,21 +0,3 +0,20

0, » 24 0,99 0,95 0,76 0,71 0,46 0,41 - -

2, > 04 +0,20 +0,15 +0,06
2, -2, 0,91 0,83 0,90 0,84 1,0 0,82 11,6 52 10,2 6,1
m +0,18 +0,15 +0,02 +1,2 +1,0

2, - 24 15,4 12,0 - 11,4 25 14,5 - 16,0 - 224
2,50, £0,5 +4.0

23> 44 16,2 17,4 8,0 12,6 - 15,2 18,3 18,9
2; -2, +2.5 +2,0

3122, 11 13,2 27 29,3 26 10,4 26 22,4 17 25,6
3, -2, +5,6 +3,0 +3,0 +10 +3

for which the main role is played by the interaction potentials of like nucleonsV,,,,V;,,. The usefulness
of these potentials in these cases is determined by their properties, which well preserve the scheme of
generalized seniority.At the same time, such a purity of the quantum number of the generalized seniority?,
greatly simplifies the calculation procedure and leads to close real energy values for small values of the
spins J, as can be seen from Table 2,3,4.
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Table 4 - Relationships of o (E 2/ M 1) transitions between states in Ru nuclei

1005, 10zp,, 104p,, 106p, 108p,,
Ji—Js
Exp. Theor. Exp. Theor. Exp. Theor. Exp. | Theor. Exp. Theor.
2, > 2 3.4 2,9 -6,0 -2,7 -9,0 -4,4 7,1 5,6 4,3 2,9
+0,8 +0,2 +1,4 +0,8
25> 2 3,6 0,25 1,2 0,43 0,25 0,24 0,43 0,87 0,56
+0,03 0,11 0,12 +0,56
3102, 0,45 0,9 0,90 0,6 -3,2 -1,7 -3,8 -5,4 -3,0 -1,4
+0,1 0,15 +0,4 +1,4 +0,95
4, > 4, - 0,17 - 0,26 0,11 0,18 - 0,22 - 22,4
40,11
3102, - -4,3 -7,2 -3,2 - - - -2,3 - 0,27
(10)
4, - 24 - - 0,01 - - - - - - 3,1
(€]
5,4, - - -1,05 - - - - - -
40,05

However, in neutron-protoninteractionsly,,,-begin to dominate the quadrupole-quadrupole interaction,
which strongly mixes states with different senorities.If we restrict ourselves to several protons or neutrons
in the valence shell, then the mixing of components in states with high senority, mainly the lower excited
states, can be included in the calculations of the lower approximation of matrix diagonalization.Due to the
quadrupole nature of the n-p forces, the components of the wave functions of such
asSY Sz’,V (DnDp)Ofractions will mix states of different senoriths, which strongly wag the collectivity of D-
pair-fermion states. Because of this, the discrepancy between the calculated and experimental values of the
energy of states with large J becomes stronger, as can be seen from Table 2,3,4.Apparently, the
hexadecapole component in pn-forces will play a certain role here.In addition, in such calculations, the
single-particle energies were taken constant for all isotopes of the nucleus, whereas they can be varied by
changing the number of nucleons in the shells.However, as shown by calculations for deformed
isotopes'°®Ruthe main properties of the states in terms of energy are reproduced quite satisfactorily, since
they change smoothly.

Table 3 and 4 shows the probability ratios of E2 transitions between different states of Ru
isotopes. They also show satisfactory agreement of their calculated values with experimentally measured
functions, especially for low-lying states.For levels with higher energies, these values differ significantly
more. This is also mainly due to the strong mixing of states with different senorities due to quadrupole n-p
interaction, as well as the neglect of the contributions of G-pair configurations to computational
procedures.In many microscopic models with the method of mapping the fermion space into the bosonic
one, the mapping methods are carried out not through the operators of fermion-boson transformations, but
through the equalities of the matrix elements of the states in two spaces.As was noted [5, 6], these two
spaces are interconnected through the bosonic and fermionic seniority. Such a connection is especially
important for states with high senority, in which np-forces between particles play the main role. And they
can give a fairly large contribution and bosons with large orbital moments.This leads to a change in the
energies of the d-boson states. Therefore, in such calculations with space, it was necessary to renormalize
the parameters of bosons included in the theory or parameters of quadrupole interactions in microscopic
calculations. In our calculations, it was not necessary to lead such processes of renormalization of the
parameters of theories. Despite this, the fermion theory with generalized senority, in general, gives a
satisfactory smooth description of the properties of nuclei with average atomic weights.

CONCLUSION

On the basis of the generalized quasispin approach, the microscopic structure of the collective states
of even ruthenium isotopes in the low-energy region was studied. To solve the many-particle problem in
the space of generalized quasispins of, the potentials of nn, pp, npinteractions are taken in the most general
form, the parameters of which are chosen from a comparison of the calculated values with their
experimental values.
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The description of microstates of nuclei with the help of generalized senority and double tensors,
which express pairwise interaction of nucleons, greatly simplifies the procedure for calculating matrix
elements, which give a good confirmation of the experimental facts on energy of states and on
probabilities of electromagnetic transitions between them, especially for states with small quantum
numbers J. However, the quadrupole interaction operator between different nucleons V,,-strongly mixes
states with different senorities.

This fact strongly influences the formation of the collectivity of the D-fermion states in the systems,
which weakens the consistency of the calculated and experimental values of the energy levels, as well as
the relative probabilities of E2 transitions between them, with large spins J.Nevertheless, the main
properties of deformed nuclei are transferred quite satisfactorily. In some microscopic calculations using
the method of mapping the fermion space into the bosonic space due to the connection of these
representations through fermionic and bosonicsenority, the contributions of pairwise states with large
orbital moments, for example, G-states, increase.Apparently, the divergence of our calculations for a state
with large angular moments and with higher excitation energies also requires taking into account the
contributions to them of G-pair formations. In addition, in the composition of high-energy levels, the role
of that part of the complete Hamiltonian that was not included in the generalized seignity scheme is
1mportant.

K. Bakreiéaes', A. loneaxankeibr’, MLK. Bakrbi6aes’, H.O. Koiiibik'

18J1—<13apa6p1 aterHnarpiKazak ¥uTeIKY HUBepeuTeTi, Anmmatsl, KazakcraH,
2 K.N.CorbaeB areiagarsr Kazak ¥arTeik 3eprrey Texaukansik YHUBEpcutTeTi, AnMatsl, KazakcTan

AJIPOJAP KOJUIEKTUBTIK KYWJIEPIHIH, ®EPMUOH/IBIK TEOPUSJIAPBIH
JKOHE OHbI HAKTBI )KYHUETE KOJIJIAHY

AHHOTanMsl. ATOMJBIK CaJMarbl OpTallla SIPOJIap KOJUIEKTUBTIK KYWIEPIHIH MHKPOCKONTBIK KYPBUIBIMBI
KOCapJlaHFaH HYKJIOHJBIK KaObIKIIa Mojerninae 3eprreneai. Teopusaa yiakeH (HepMHOHIBIK KEHICTIK KallblIaHFaH
CEHBOPHUTH 9Jici keMmeriMeH peanasl SD-omeparopmap meHOepiHe NeliH KpIcKapa Kecuiai koHe OipOenmiexTik
JICHreiiep JKIKTeNMyiHIH >KyHenmeri KyiJiepiH KOJUIEKTHBTIK KYpBUIBICBIHA acepi ae ecemnke aibiHAbl. OchiHAal
KOIOOIIIEKTIK MOCENIeH] IIeNTy YIIiH JKaJIIbUIaHFaH KBa3UCIIMH 9JIiCi MEH KOCapiIbl TEH30pJIap YFBIMBI KOJIAAHBLI/IBI.
Onap Kocapibl MOTEHOHAIAAPIBIH MAaTPULAIAPBIH ecenTeyre oTe Konaiiel. TOJBIK TIaMUJIBTOHMAH Tas3a
(hepMHOHIBIK KEHICTIKTE JOJ AMaroHampAaybl Oipre eHrizinmi. MyHna (epMHOHIBIK orepaTopiapabl OO30HIIBIK
TYpre alHaIABIPYABIH KaXKeTi 0oiaMamsl. Oceprecymri 0030HAap MOAETiHIH mapaMeTpiepi (GepMUOHABIK KOIMEH
ecenrenai. Kypsurran Teopus pyTeHui sSApOchIHBIH N=58-66 >KYITBl H30TONTApbl KYPHUIBICHIHA KOJAAHBUIIBL.
Onapjarbl TOMEri SHEPrusuibl JEHIel CHEeKTPl JKOHE 3JIEKTPOMArHMTTIK E2-aybICy BIKTHMMAIABIFBl €CENTENill,
QIHBIFaH [aMajap KCIIePIMEHTTE TaObUIFaH MOHAEPIMEH CallbICTBIPBIIIBL.

K. BaKTmﬁaeBI, A. I[aneﬂxamcbmbll, M.K. BaKTblﬁaeBz, H.O.Koiiabik'

'Kasaxckuii HAMOHANBHEIH YHHBEpCHTET M. atb-DPapabu, Anmarsr, Kazaxcran
2 Kaszaxckuii HAIIMOHAJFHBIN HCCIe0BaTeNbCKAN TexHrmueckmii yanepceuteT nM.K.M.CarmaeBa
Anmatel, Kazaxctan

®EPMHOHHAS TEOPUS KOJUIEKTUBHBIX COCTOSIHUAM SIJIEP
EE NIPUJIOKEHUE K CTPYKTYPE PEAJIBHBIX CUCTEM

AnHotanusi. Ha ocHOBe HYKJIIOHHO-TIAPHOHW OO0OJIOUEYHOH MOJENnH, B KOTOpOW MeToAoM 0O0O00IEeHHON
ceHbOpPUTH  oOpe3aercs  (DEPMHOHHOE TNPOCTPAHCTBO  "peamuctuueckumu”  SD-omeparopamu,  H3y4YCHBI
MUKPOCKOIIMYECKAsd CTPYKTypa KOJUIEKTUBHBIX COCTOSIHMM SiIEp CPEJHEro aroMHOro Beca. IIpu 3ToM yuTeHsl
BIIMSIHUSL PACIICIUICHHs OJHOYACTHYHBIX YPOBHEH Ha KOJUIGKTHBHO-TNIAPHYIO CTPYKTYpY CHUCTeMbl J[isi perueHus
TaKOil MHOTOYACTHYHOW 3aJa4yd HCMOJB3YyeTCS METON OOOOLICHHOTO KBa3WUCIIMHA U ABOWHBIC TEH30DHI,
o0Jieryaroniue BHIYUCICHHUS MAaTPUYHBIX 3JIEMEHTOB MapHBIX B3aUMOJCHCTBHN HYKJIOHOB. [1ONMHBIA TaMHIBTOHHAH
JHaroHAIM3yeTCs TOYHO B (DEPMHOHHOM INPOCTPAHCTBE 0€3 MPUMEHEHHs NPOLeNyphl 0TOOpaXkeHHs (HEepMHOHHBIX
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orepatopoB B 0O30HHBIC. BEIMHCICHBI TapaMeTpbl MOJECIM B3aUMOJCHCTBYIOIIMX OO30HOB Ha OCHOBE
nepesaraeMoro (epMHOHHOTO MoAxona. Teopust NMPUIIOKEHa K H3YYEHHIO CBOMCTB KOJUICKTHBHBIX COCTOSHUI
YETHBIX M30TONOB pyTeHHsI ¢ N=58-66. BBIUUCICHBI CIIEKTP COCTOSHUI HHU3KUX SHEPTHH TakKe BeposTHOCTH E2-
NIEPEXO0JI0B B HUX U OHU CPABHEHBI C HMEIOIMMHCS SKCIIEPUMEHTAILHBIMHI JaHHBIMH.
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INVERSE PROBLEM OF STURM-LIOUVILLE OPERATOR
WITH NON-SEPARATED BOUNDARY VALUE CONDITIONS
AND SYMMETRIC POTENTIAL

Abstract: In this paper, we prove uniqueness theorem, by one spectrum, for a Sturm-Liouville operator with
non-separated boundary value conditions and a real continuous and symmetric potential. The research method differs
from all previously known methods and is based on internal symmetry of the operator generated by invariant
subspaces.

Keywords: Sturm-Liouville operator, spectrum, inverse Sturm-Liouville problem, Borg theorem,
Ambartsumyan theorem, Levinson theorem, non-separated boundary value conditions, symmetric potential, invariant
subspaces, differential operators, inverse spectral problems.

1. Introduction
We study the following inverse spectral problem for the Sturm-Liouville operator:

Ly =y"+q(x)y, x € (0, 1),
on a finite interval (0, 1) with non-separated boundary value conditions. Inverse problems consist in
restoring the coefficients of differential operators by their spectral characteristics. Such problems often
arise in mathematics and its applications.

Inverse problems for differential operators with decaying boundary value conditions have been
thoroughly studied (see monographs [1-5] and references). More difficult inverse problems for Sturm —
Liouville operators with non-decaying boundary value conditions were studied in [6—17] and other works.
In particular, periodic boundary-value problem was considered in [6, 7, 9, 14]. 1. V. Stankevich [6]
proposed formulation of the inverse problem and proved the corresponding uniqueness theorem. V. A.
Marchenko and I. V. Ostrovsky [7] characterized spectrum of a periodic boundary-value problem in terms
of a special conformal mapping. The conditions proposed in [7] are difficult to verify. Another method,
used in [9], made it possible to obtain necessary and sufficient conditions for solvability of the inverse
problem in the periodic case that are more convenient to verify. Similar results were obtained in [9], and
for another type of boundary conditions, namely

y'(0) = ay(0) + by(n) = y'(m) + dy(x) — by(0) = 0.

Later similar results were obtained in [12, 13]. In the paper [18], the case when the potential q is
symmetric with respect to the middle of interval, i.e., q (x) = q (& — x) a.e. on (0, ), was studied, and for
this case a solution of the inverse spectral problem was constructed and a spectrum was given. The
symmetric case requires nontrivial changes in the method and allows us to specify less spectral
information than in the general case. Some results for the symmetric case were obtained in [10] and [17] -
[24].

— 50 ——
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The inverse problems of spectral analysis are understood as problems of reconstructing a linear
operator from one or another of its spectral characteristics. The first significant result in this direction was
obtained in 1929 by V.A. Ambardzumyan [25]. He proved the following theorem.

By 1, < 4; < 1, < -+- we denote eigenvalues of the following Sturm-Liouville problem

=y +qx)y =2y, (1.1)
y'(0)=0, y'(m) =0; (1.2)
where q(x) is a real continuous function. If

A, =n?2(n=0,12,..) toq(x) =0.

The first mathematician who drew attention to importance of this Ambardzumyan result was the
Swedish mathematician Borg. He performed the first systematic research of one of important inverse
problems, namely, the inverse problem for the classical Sturm — Liouville operator of the form (1.1) by the
spectra [26]. Borg showed that in the general case one spectrum of the Sturm - Liouville operator does not
determine it, so the Ambartsumyan result is an exception to the general rule. In the same paper [26], Borg
showed that two spectra of the Sturm — Liouville operator (under various boundary conditions) uniquely
determine it. More precisely, Borg proved the following theorem.

Borg Theorem.

Let the equations

—y" +q(x)y = 2y, (1.1
—z"+px)z = Az, (1.3)

have the same spectrum under the boundary value conditions

(@@ +8y© =0 L
yy(@) + 8y’ (m) = 0; '
under the boundary value conditions
(@ By =0 (L)
y'y(@) +8'y'(m) = 0. '

Then q(x) = p(x) almost everywhere on the segment [0, 7], if
6-6"=0, 5]+ 18| > 0.

Soon after the Borg work, important studies on the theory of inverse problems were carried out by
Levinson [27], in particular, he proved that if g(m — x) = q(x), then the Sturm — Liouville operator

—y" +qx)y = Ay, (1.1)

y'(0) — hy(0) =0,
{y’(n) +hy(m) =0 (1.5)

is reconstructed by one spectrum.

A number of B.M. Levitan works [28, 29] are devoted to reconstruction of the Sturm — Liouville
operator by one and two spectra.

This work is devoted to a generalization of the theorems of Ambartsumian [25] and Levinson [27], in
particular, our results contain the results of these authors. Research method of this work appeared under
influence of [30] - [32], and differs from all previously known methods.

1. Research Method.

Idea of this work is very simple. Having studied in detail contents of [1, 3], we realized that both of
these operators have an invariant subspace. If for the linear operator L, we have the formulas

LP =PL*, QL =L"Q,

where P, Q are orthogonal projectors, satisfying the condition P + Q = I, then the operators L and L* have
invariant subspaces, sometimes restriction of these operators to these invariant subspaces, under certain
conditions, form a Borg pair.
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2. Research Results.
In the Hilbert space H = L?(0, ) we consider the Sturm — Liouville operator.

Ly =—-y" +q(x)y, x € (0,m); (3.1)

{ally(o) + a;,y'(0) + ay3y(m) + a1y’ () =0,

az1y(0) + az;y'(0) + az3y(m) + az,y'(m) =0

where q(x) is a continuous complex function, a;; (i =1,2; j=1,2,3,4) are arbitrary complex
coefficients, and by A; j (i=1,2; j=1,2,3,4) we denote minors of the boundary matrix:

(3.2)

:(all a;; Q13 a14)
Ay1 Gy @23 A4/

Suppose that A;3# 0, then the Sturm — Liouville operator (3.1) — (3.2) has the following form
Ly =—-y" +q(x)y, x € (0,7); (3.1)

{A133’(0) — A3,y'(0) — Azuy'(m) =0,
A1,y'(0) + Ayzy(m) + Ay’ () =0,

and its conjugate operator L* has the form

Ltz=—-z"+q(x)z, x € (0,m); 3.1)"

(3.3)

(B15200) B3¢ 0) =Byt 1) =0 o3
D347 (0) + Ay3z(m) + A142" () = 0. '
Let P and Q be orthogonal projectors, defined by the formulas
_ux)+u(r—x) _v(x)-v(n—-x)

Pu(x) = LI | gy (y) = X2 (3.4)
The main result of this paper is the following theorem.
Theorem 3.1. If A;3# 0, and
1) LP = PL*; (3.5)
2) QL = L*Q; (3.6)
3) A= —Azy; (3.7

then the Sturm — Liouville operator (3.1) — (3.3) is reconstructed by one spectrum.

3. Discussion.

In this section we prove the theorem and discuss the obtained results. The following Lemmas 4.1 and
4.2 can have independent values.

Lemma 4.1. If for a linear and discrete operator L, the following equalities hold:

1) LP = PL*; (3.5)
2) QL = L*Q; (3.6)
3) P+Q =1 (3.8)

where P, Q are orthogonal projectors, and I is unit operator, then all its eigenvalues are real.
Proof.
Let LP = PL*, QL = L*Q; then
(LP)* = P*L* = PL* = LP;
QL) =LQ"=LQ =QL;
i.e. operators LP and QL are selfadjoint, therefore their eigenvalues are real.
If Ly = Ay, y # 0, then QLy = AQy, L*Qy = AQy, L"Q(Qy) = AQy, QL(Qy) = AQy if Qy # 0,

then A is a real quantity; if Qy = 0, then y = Py # 0, and LPy = APy, LP(Py) = APy. Consequently, 1
is again real quantity.

— 54 ——



ISSN 1991-346X 6. 2019

The following lemma shows that the spectrum (L) of the operator L splits into two parts; therefore,
the operator L, apparently, also splits into two parts. Furthermore, we will see that this is exactly what
happens, and more precisely, these parts form a Borg pair under a certain condition.

Lemma 4.2. If L is a linear discrete operator, satisfying the conditions:

1) LP = PL*, (3.5)
2) QL =1L*Q; (3.6)
3) P+Q =1 (3.8)
where P, Q are orthogonal projectors, and [ is identity operator, then we have
o(L) =0(Ly) Ua(L,). (3.9)
where L; = LP, L, = QL, o(L) is a spectrum of the operator L.
Proof.

If Ly = Ay, y # 0, then QLy = AQy, L*Qy = AQy, L*Q(Qy) = 1Qy, L,Qy = AQy. If Qy # 0, then
A€a(Ly). If Qy =0, then y = Py # 0 and LPy = APy, LP(Py) = APy, L,Py = APy. Consequently,
A€ a(Ly).

Hence, a(L) € (L) Ua(L,).

IfA#0,and A € (L) U c(L,), then

a) If 1 € a(L,), then Ju # 0, such that u € H;, Lyu = Au, LPu = Au,— Lu = Au. Consequently,
A€ o(l).

b) If 1 € o(L,), then 3v € H,, v # 0 such that L,v = Av, QLv = Av, LYQv = Av, L*v = Av. Thus,
A€o(Lt) =0a(L).

¢) If 0 € o(Ly)VUa(Ly), then if 0 € 6(L;), then Lyu =0, u € H;, LPu=0,=>Lu=0,=>0¢€
o(L).If0 € 0(L,), then L,v = 0,v € H,, QLv = 0,=> L*Qv =0,L*v =0,=> 0 € a(L*) = o(L).

The following two Lemmas 4.3 and 4.4 refine boundary conditions of the Sturm - Liouville operators
with invariant subspaces.

Lemma 4.3. If

a) A3+ 0;

b) LP = PL*;

then the following formulas hold
1) A1z + Azp= A1q + Azy;

2) B12=814 _ (A12—A14) — B34—Az,
Aqg3 Ag3 Az’

3)q(x) = q(x), q(m = x) = q(x);
and the operators L and L* have the following forms:
a)Ly = =y" + q(x)y, x € (0,m);

32[

A A
YO -y — 222 [y (0) 4y = 0,
13

A12y'(0) + Ayzy(m) + Agay' () = 0.
b)Ltz=—-2z"+4+q(x)z, x € (0,7);

A, — Ay,
2(0) + z(m) + % [z (0) + z'(7)] = 0,
13
Brs2(0) ~ 8337/ (0) — Brg(m) = .
Proof.
Assume that
LP = PL*; (3.5)
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From the condition z € D(L*) it follows that y = Pz € D(L), therefore we have the following
equalities:

z(0) + z(m) z'(0) — z'(m) z'(m) —2z'(0)
13 2 — Az 2 — A3y 5 =0,
z'(0) — z'(m) z(m) + z(0) z'(m) — z'(0)
127 5  th > 14 =0
B A W A e AL
A1z —Z(O) ;Z(n) + (A12 — Ag4) Z—,(O) 2 =0

2

From (3.5) it follows that A, + Az,= Ay, + A3y, then Az, — Azp= Ay, — Ay, and two boundary
conditions merge into one boundary condition. Hence,

z(0)+z(m)
2

z'(0)-z'(m) _

A
13 >

Summing up the boundary conditions (3.3)", we get
A13[2(0) + z(m)] + (B34 — B32)2" (0) + (Ags — Ag2)Z' (M) =0,

Dy3[2(0) + z(m)] + (A1 — 814)2' (0) — (A1 — Ayy)Z' () = 0,

Dy3[2(0) + z(m)] + (81 — A19)[2'(0) — 2" ()] = 0. (4.2)
From (4.1) and (4.2) we write the system of equations:
A [z(0) JZrZ(ﬂ)] F gy — AL [z’ (0) ;Z’(ﬂ)] _o,
i [z(0) JZrZ(ﬂ)] + (G —E0) [z’ (0) ; z'(m)] _ 0.

This system has a nontrivial solution, therefore,

Az Ay — Ay T Ajp—A1y — (A12—A14)
A13 A].Z - A14 A13 A13

Further, subtracting the second boundary condition from the first condition (see 3.3), we obtain
Ay3[y(0) = y(m)] — (A12 + A32)y"(0) — (B34 + A1)y’ (m) = 0,
Ay3[y(0) — y(m)] — (A1 + A3x)[y'(0) +y'(m)] = O,

A A
¥(0) — y(1) — % y'(0) + y'(m)] = 0

Now we study properties of the differential expression L. From the formula LP = PL*, we get
zx)+zm—x)  z2'(x)+z"(m—x) z(x) + z(r — x)

LPz =1 > - 5 +q(x) > ;

z"'"(x)+z"(mr—x)
2
q(x)z(x) + q(m — x)z(mw — x)
+ > :
q(x)z(x) —q()z(m —x) = q(x)z(x) + g(n — x)z(m — x),

PL*z = P°[-2" + q(x)z] = —
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{[ [q(x) — q(x)]z(x) + [q(x) — q(r — x)]z(m — x) = 0, 43)

q(r —x) —q(r — x)]z(mr — x) + [q(r — x) — g(x)]z(x) = 0;
q(x) —gq(x) q(x) —q(m —x)
qr —x) —q(x) q(m—x)—qlm—x)
[q(x) — q()][q(mr —x) — q(m — x)] -
[q(x) —q(mr — x)][q(r — x) — g(x)] = 0;
q(x)q(m —x) —q(x)q(m — x) — q(x)q(r — x) + g(x)g(m — x) =
=q(x)q(m —x) — q(x)q(x) — q(r — x)q(mw — x) + q(w — x)q(x);
q(x)g(m —x) + q(x)q(mr — x) = q(x)q(x) + g(w — x)q(m — x),
q()[g(mr —x) — q()] + q(r — 0)[q(x) — q(mr — x)] = 0,
[q(x) —q(m —x)] - [q(mr —x) —q(x)] =0,
lg(x) —q(m@—x)|*> =0, => q(x) = q(m —x).
Further, from (4.3) we get
[q(x) — q(x)]z(x) + [q(x) — g(x)]z(r — x) = 0,
[q(x) — q()][z(x) + z(r — x)] = 0,=> q(x) — g(x) = 0.
Lemma 4.4. If
a)A3# 0;
b) QL = L*Q,
then
1) Ay 4+ Azp= A1y + Azy;

2) (A12+A32) — Ajp+A3; — Ajg+Azy
Ag3 A3 Az’

3) q(m —x) = q(x), g(x) = q(x),
and the operators L and L* have the form

4) Ly =-y" +q(x)y, x € (0,m);
A1p+A3;

{y(O) —y(m =22 y(0) +y' (M) = 0,
A12y"(0) + A3y (m) + Ay’ () = 0.

A:| =0;

5) Ltz=-z"+q(x)z, x € (0,m);
{z(O) +2(m) + P2 [ (0) - 2 (@] = 0,

A132(0) = Ag,2'(0) — Agpz' () = 0.
Proof.
Suppose that the following equality holds:

QL=1L"Q

then the condition y(x) € D(L) implies that z = Qy € D(L*), therefore the following equalities
hold:

_y(x) —y(r—x) oy Y (@) +y (m—x)

z(x) = 3 , z'(x) = > ;
A—By(o) ;y(ﬂ) _A—gzy’(O) ;y’(n) _A—lzy () ery © _ 0,
A—My’(O)ery’(n)+A—13y(n);y(0)+A—Hy’(n);y’(0) _o;

— 57 =
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A—By(O) ;y(n) B (A_lz+A—32)y’(0) ;y’(n) _ 0,
_A—lgy(O) ;y(n) N (A_MJFA—M)y’(O) Ty _,,
A—By(O) ;y(n) _ (A—H+A—32)y’(0) ery’(n) o,
A—By(O) ;y(n) B (A_H+A_34)yl(0) ;y’(n) _o

From QL = L*Q it follows that A;, + Az,= A4 + Ag,, therefore there is only one boundary
condition
— v(0)— Y0+
AL ¥( )Zy(n) — (B, + Asz)y ( )Zy m _ 0. (4.4)
Subtracting the second boundary condition from the first boundary condition in (3.3), we obtain

A13[y(0) —y(m)] — (A2 + A33)y'(0) — (A4 + A3y)y' () = 0,

8 2O, 4 ) OO g5

Combining the boundary conditions (4.4) - (4.5), we have

N 0) — TT - (0 + "(m
A13 y( ) 2 y( ) (A12 A32)y ( ) 2 4 ( ) - 0;
0) — T (0 + "(m

This system of equations has a nontrivial solution, therefore
B G+ E)
Ayz —(A12 +A37)
C1103XuB rpaHMYHBIX ycioBuit (3.3)", umeem
D13[2(0) + z(M)] + (B34 — B32)2' (0) + (B4 — By5)Z' (W) = 0,
Dy3[2(0) + z(M)] + (812 — 814)2'(0) — (By2 — By4)2' () = 0,
Dy3[2(0) + z(m)] + (812 — Ay 9)[2'(0) — 2'(M)] = 0.

Consequently, boundary conditions of the operators L and L* have the following forms:

A, +A A, + A
—0=> ( 12 32) _ 512 32
Aq3 Aq3

A1x+A3;

L {y(O) —y(m) — 22y (0) +y' (W] = 0,
A15Y"(0) + A3y (m) + Ag,y' () = 0;
L {z(O) +2(m) + 27 (0) - 2 ()] = 0,
A132(0) — A3,2"'(0) — Ay,z' (1) = 0.
Further, from the formula QL = L*Q, we get

oLy = 0°l—y" + qay] = -2 _}2/ k2

q(x)y(x) — q(m — x)y(w — x)
+ > ;

- [ym el x>] _

L*Qy =

_ ) - 32/”(71 -0, 00

y@) —yw—x)
: ;
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q()y(x) —q(m — x)y(mr —x) = glx)y(x) — g(x)y(m — x),

[q(x) — q()]y(x) + [g(x) — q(m — x)]y(m — x) =0, (4.6)
[q(mr —x) —q(m —x)]y(m —x) + [q(mr — x) — q(x)]y(x) = 0;
q(x) — q(x) q(x) —q(mr —x)

lgm=x)—q(x) q@@—x)—gm—-x)|
[q(x) —q()] - [q(mr —x) —q(r — x)] —
—[q(x) — q(m — 0)][g(m — x) —q(x)] =0,
q(x)q(m —x) — q(x)q(mr — x) — q(x)q(m — x) + g(x)q(r — x) =
=q(x)q(m—x) — q(x)q(x) — q(mw — x)q(mw — x) + q(mw — x)q(x),
q(x)g(m —x) + q(x)q(m — x) = g(x)q(x) + q(r — x)q(m — x),
q()[g(mr —x) — ()] + q(r — 0)[q(x) — q(mr — x)] = 0,
[q(x) — g(m — )][q(m —x) — q(x)] =
=|q(x) = q(m = x)|*> = 0,=> q(x) = q(m — x).
From (4.6) we have
[q(x) —q()]ly(x) —y(r —x)] = 0,=> q(x) — q(x) = 0.

The previous Lemmas 4.3 and 4.4 yield the following theorem.
Theorem 4.1. If

a) A3+ 0;

b) LP = PLY;

¢) QL =L*Q,
then

1) (A12+A32) — Ajp+Azy _ AgatAzg
A4 Azq Dpy '
D14—A12\ _ A14—Dyp _ Azp—Azy
2)(A24 )_ A24__ Bag
3) q(m—x) = q(x),q(x) = q(x);
and the operators L and L* have the forms
4) Ly =—-y" +qx)y, x € (0,m);

{y(O) —y(m) — 22852 [y (0) 4+ ' ()] = 0,

A3
A12y'(0) + Agzy(m) + Ay’ () = 0.
5) L*z=-z"+q(x)z, x € (0,m);
{zm) + 2(m) + 22227/ (0) — 7' (m)] = 0,

0132(0) — B352'(0) — Ayp2' (m) = 0.
Further from the formulas LP = PL* we note that the operator L; = LP acts in the subspace H; =
PH, where H = L?(0, ). Assuming

u(x) = Py(x) =

y(x) +y(mr—x)

2
we have

y'(x)—y'(mr—x)

u'(x) = 5

Then Theorem 4.1 implies that
T
Liu=—-u"+qx)u, X € (O,—),
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A1zu(0) + (Agz — Ag)u’(0) =0,
U “
Ify € D(L), then v(x) = Qy € D(L"), and
QLy = L*Qy =L*QQy =L,y =L*'v = —v"(x) + g(x)v = —v" (x) + q(x)v.
From Qy € D(L*) it follows that

—y(0) —y(@)

YO +y'(m)
A13# — (A +Az) ————=0

2 7
A3v(0) — (A +452)v'(0) = 0,

A, + A
v(0) — —2—25(0) = 0,
s
v(0) — —22—3257(0) = 0,
A13
A13v(0) — (A + A3x)v'(0) = 0.

Thus,
L,y =—v" +qx)v x € (O E)
) ) 2 )
{A13V(0) — (812 +432)v'(0) =0, 49
s .
v(3)=o.

Equating coefficients of the boundary conditions (4.7) and (4.8), we have
Ay —Ay= —(D13 + A33),=> Ap=Ayy — Ay — Agp=
= —(A1z +A3; — Ayy) = —Azy.
Then the operators L, and L, have the following forms
s
Liu=—-u"+qx)u, X € (O,—),
A13u(0) - (Alz + A32)u,(0) = 0,
u (E) = 0.
2
T
L,v =—-v" + q(x)v, x € (0, —),
A13U(0) - (AIZ + A32)v,(0) = 0,
v (E) = 0.
2

If spectrum of the operator L is known, then, by Lemma 4.2, proved earlier, spectra of the operators
L, and L, are known. Then, by Borg theorem, the operator L, is uniquely defined on the interval [0, %],

and, due to parity and periodicity of the function q(x), on the whole interval [0, 7].




ISSN 1991-346X 6. 2019

00X 517.9
A.l].l.l.l.lamlanﬁaenl, A.A.l].la.ﬂz[aﬂﬁaenaz, A.Beiice6aepa’ ,E.A.l.l.la.mlaﬂﬁal"d4

1XaJn,IKapam,IK Silkway ynusepcureri, llIbiMkeHT K., Kazakcran;
2’4A171Ma1<TLH< QJIeyMETTIK-MHHOBAIMSUIIBIK yHUBepcuTeTi, IIIbiMKeHT K., Ka3akcran;
*M.0.Aye30B aTbingarst OHTYCTiK Kasakcran MemiekerTik yausepcuteri, IlIsivkenT ., Kasakcran

HOTEHIHAJIbI CUMMETPUSLIBL, AJI IIEKAPAJIBIK IHAPTTAPDI
AXKBIPAMAUNTBIH HITYPM-JINYBUJLJI OIIEPATOPBIHBIH KEPI ECEBI TYPAJIBI

AnHoTanusi. byn eHOEKkTe NOTCHIMANB CHMMETPHSUIBI, HAKTBHI Opi Y3IKCI3, al MIeKapalblK [apTTaphl
axopIpaMaiiTeiH [TypM-JInyBuin onepaTopbiH Oip CIEKTp apKBUIBI aHBIKTayFa OONaTHIHBI KOpceTulni. 3epTTey amici
OYpBIHFBEI oicTepIiH emoipiHe YKcaMaiIpl, )KOHE OJl ONEepaTOPIBIH IIIKi CHMMETPHSACHIHA HETi3/ereH, al Ol e3
Ke3€eTiH/Ie MHBAPUAHTTHI KEHICTIKTEPIiH CaIaphl.

Tyiiin cesmep: Ilrypm-JlnyBuwminig oneparopsi, crektp, lltypm-JlnyBwminin xepi ecebi, boprreig
TeopeMachl, AMOapIyMsHHBIH TeopeMachl, JIEBUHCOHHBIH TEOpEeMachl, AXbIPAMAWTBIH IIEKApPAIBbIK IIAPTTap,
CUMMETPHSLIIBI TOTEHIINAI, MHBAPHAHTTHI KEHICTIKTEP.

YK 517.9
A.lLINanxxaun6aes’, A.A.Illaazan6aeBa’ , A.JK.Beiice6aesa’ , B.A.lllangan6aii’

'Mesxnynaponsiii yansepeuter Silkway, r. Ilsivkent, Kazaxcran;
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OBPATHAS 3AJAYA OIIEPATOPA HITYPMA-JINYBUJLJIA
C HE PA3JAEJEHHBIMU KPAEBBIMU YCJIOBUAMHU U CUMMETPUYHBIM IOTEHITUAJIOM

AHHoTanus. B nanHOlil paboTe I0Kka3zaHa TeopeMa €AMHCTBEHHOCTH, IIO0 OJHOMY CIEKTpY, IS OIlepaTopa
[ typma-JInyBuiuist ¢ He pa3feeHHbBIMU KPAaeBbIMU YCIOBUSAMH U BEIECTBEHHBIM HEMPEPHIBHBIM U CUMMETPUYHBIM
HOTeHIManoM. MeTon uccienoBaHHs OTJIMYAETCS OT BCEX M3BECTHBIX METOJOB, U OCHOBAaH Ha BHYTPEHHIOK
CUMMETPHIO OIEepaTopa, MOPOKIACHHOTO HHBAPUAHTHBIMU HOANPOCTPAHCTBAMHU.

KioueBbie caoBa: Oneparop Lltypma-JInysuis, cnekrp, obpartHas 3amada lltypma-JInyswuisa, teopema
Bopra, Tteopema AmOaprmymsiHa, Teopema JIeBHHCOHA, Hepas[eleHHBIE KpaeBble YCIOBHSA, CHMMETPHYHBIN
MOTEHIMAJl, ”HBAPHAHTHBIE ITOIIPOCTPAHCTBA.
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RESEARCH OF MULTIPERIODIC SOLUTIONS OF PERTURBED
LINEAR AUTONOMOUS SYSTEMS WITH DIFFERENTIATION
OPERATOR ON THE VECTOR FIELD

Abstract. A linear system with a differentiation operator D with respect to the directions of vector fields of the
form of the Lyapunov's system with respect to space independent variables and a multiperiodic toroidal form with
respect to time variables is considered. All input data of the system multiperiodic depend on time variables or do not
depend on them. The autonomous case of the system was considered in our early work. In this case, some input data
received perturbations depending on time variables. We study the question of representing the required motion
described by the system in the form of a superposition of individual periodic motions of rationally incommensurable
frequencies. The initial problems and the problems of multiperiodicity of motions are studied. It is known that when
determining solutions to problems, the system integrates along the characteristics outgoing from the initial points,
and then, the initial data is replaced by the first integrals of the characteristic systems. Thus, the required solution
consists of the following components: characteristics and first integrals of the characteristic systems of operator D,
the matricant and the free term of the system itself. These components, in turn, have periodic and non-periodic
structural components, which are essential in revealing the multiperiodic nature of the movements described by the
system under study. The representation of a solution with the selected multiperiodic components is called the
multiperiodic structure of the solution. It is realized on the basis of the well-known Bohr's theorem on the connection
of a periodic function of many variables and a quasiperiodic function of one variable. Thus, more specifically, the
multiperiodic structures of general and multiperiodic solutions of homogeneous and inhomogeneous systems with
perturbed input data are investigated. In this spirit, the zeros of the operator D and the matricant of the system are
studied. The conditions for the absence and existence of multiperiodic solutions of both homogeneous and
inhomogeneous systems are established.

Keywords: multiperiodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector field,
perturbation.

1. Introduction. The foundations of the method used in this note were laid in [1, 2], which were
further developed in [3—14] and applied to the study of solutions different problems in the partial
differential equations [15, 16]. These methods with simple modifications extend to the study solutions of
problems of the differential and integro-differential equations of different types [1-16], in particular,
problems on multi-frequency solutions of equations from control theory [17]. Many oscillatory
phenomena are described by systems with a differentiation operator with respect to toroidal vector fields,
and new methods based on the ideas of the Fourier [18], Poincaré-Lyapunov and Hamilton-Jacobi
methods [19, 20] appear to establish their periodic oscillatory solutions. The methods of research for
multiperiodic solutions are successfully combined by methods for studying solutions of boundary value
problems for equations of mathematical physics. Elements of the methods of [1, 2] can easily be found in
[21-25], where time-oscillating solutions of boundary value problems are studied by the parameterization
method.
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As noted above, the considered system of partial differential equations along with multidimensional
time contains space independent variables, according to which differentiation is carried out to the
directions of the different vector fields. The autonomous case of this system was considered in [15, 16],
where differentiation with respect to time variables was carried out in the direction of the main diagonal of
space, and the free term of the system was independent of time variables. In this case, these parameters of
the systems received perturbations depending on time variables. In the note, the method for studying
multiperiodic structures of general and multiperiodic solutions is developed, the conditions for the
existence of a multiperiodic solution are established, and its integral representation is given.

We consider the system of linear equations

Dx = Ax + f(z,t,¢) (1.1)

with differentiation operator

D:i+ a,é + V]Cf+g,i, (1.2)
ot ot o¢

where Te(—oo,+oo):R, Z‘I(l‘l,..., tm)ERX...XRZRm,é':(é’I,..., Q’I)ER;I,
£ =(E.m) J=LLR =Y, =&, n) e R ¢ |= & +n7 <6,/ =11},

O =const >0 are independent variables with areas of change;gz i,,,_, i and
ot | ot ot,
0 0 0 —
9 :( 0 yeees 0 J, = , , j=1,lare  vector differentiation  operators;
o¢ \og g, ) ag, | ag, am,

I =diag (12,...,]2) is a matrix with [-blocks, I

, is symplectic unit of the second order,

v =(V1, v Vl) is a constant vector, v I =diag (VIIZ,...,V[IZ),
a=(a,(z,0),...,a,(zr,0) = a(z,1), g = (g,(v),..., g (r)) = g(r) are vector functions, (, ) is the
sign of the scalar product of vectors; A is a constant B XM -matrix, [ = f(7,t,{) is H-vector-
function of variables (7,7, ) € Rx R" x R}
The vector function x(7,¢,¢) is called (6, ®)-periodic with respect to (7,¢) if the identity
x(r+60,t+qw,l)=x(r,t,¢), (r,t,{)e RxR" xR)', qe Z",
was fulfilled, where Z" =Z X...XZ, Z is the set of integers, @ = (@, ..., ®, ) is the vector-period,

and the periods @, = 0,0,,..., @, are rationally incommensurable positive constants:
q,0,+q.0, %0, q,,q9,€Z,(j, k=0,m).

The motion described by a (8, w) -periodic with respect to (7,¢) function x = x(7,¢,¢ ) is called a

multiperiodic oscillation.
The main objective of this note is to determine the multiperiodic structures of solutions of the initial-
multiperiodic problems associated with the system (1.1) - (1.2).
The objective was partially been touched upon by the authors in [15, 16], when the problem of
multiperiod solutions of the autonomous system of the form (1.1) - (1.2) was considered, where time
variables 7,¢ did not explicitly enter.

2. Multiperiodic structure of zeros of the differentiation operator D . We introduce the equation
Du=0 (2.1)
with the required scalar functionu = u(7,1, § ), where D is the differentiation operator with respect to
(z,t,{) of the form (1.1).

— (4 ——
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The solutions of equation (2.1) are called the zeros of the operator D .
Suppose that 1) the vector function a(r,) has the property of smoothness with respect to

(7,t) € RxR" oforder(0,e) = (0,1,...,1):
a(r+0,t+qow)=a(r,t)e C"'(RxR"), qe Z", (2.2)
2) positive constants V,, ..., V, rationally incommensurable:
2 2 . .
qv.+qv,#0, q. +q;#0, q.,q,€Z, (0, j=0,l), (2.3)
therefore, numbers a, = 27 V;l, Jj= 1,/ are also incommensurable.

3) vector-functions g, (Z’ ) = ((p/ (1), v, (r )), J= ﬂ are continuous and ﬂj -periodic:
g (T + 5 ) =&, (T) € CEO)(R): Jj= 1,1, (2.4)

where &, , k =1,/ and ,B I Jj= 1,/ are incommensurable positive constants.

It follows from condition (2.2) that the vector field
dt

d_r = a(z‘,t) (2.5)
determines the characteristic

t=Ac,2°.1"), 2.5Y

emanating from any initial point( 7’ 1 ‘ ) € Rx R", and moreover, it has the properties:
1" =", 1,0), (2.5%)
A, t", A(",r,t)) = A(c',7,t), 7', 7" € R, (2.5%)
A’ +0,t+0,t+qw)=A",t,t)+qw, g Z", (2.5%
DV(A(z’,7,0))=0, V(1) e C(R"). 2.5%)

Obviously, 4 = v (/1(2' ’ ,T,t )) satisfies the initial condition

u|_, =v(t)yeC” (R”“ ) 2.1

Properties (2.52) - (2.5%) of the characteristic (2.5") of the vector field (2.5) are known from [2]. Hence,
we will not dwell on their justification.
The solution

u(z‘o,r,t)z v(/l(ro,r,t)) (2.6)
of the problem (2.1) - (2.1") is called the zero of the operator D with the initial condition (2.1").
Lemma 2.1. Let condition (2.2) be satisfied. Then under the condition

v(it+qo)=v()eC(R"), gez" 2.7)
the zeros (2.6) of the operator D with the initial data (2.1') have the multiperiodicity property of the form
u(z’+0,t+0,t+qw)=u(c’,z,t),qeZ". (2.8)

The proof of identity (2.8) follows from the structure of zero (2.6), property (2.5*) which is a
consequence of condition (2.2), and from condition (2.7).

Note that property (2.8) represent the diagonal @-periodicity u(z‘o ,T,t ) with respect to (‘L’O R Z') and
W -periodicity with respect to £.




News of the National Academy of sciences of the Republic of Kazakhstan

In particular, when a function A(7 ‘ ,T,1)is O-periodic with respect to 7 or T ‘ , then the zeros (2.6)

of the operator DD under the conditions of the lemma are (&, ®) -periodic with respect to (7, 7).
The vector fields

—=v, ¢, +g, (@), j=L1 (2.9)

in scalar form have the form

L= _anj + q)_/ (T)’
T (2.10)

7, :
E:Vjéj-i_l//j(z.)’ J= 91'

Obviously, the matricants Z ; (7), j= I,_I of the systems (2.10), and, consequently, the systems (2.9),

are determined by periodic relations

cosvV,T —sinvjr —
Z,(t)=| . , J=L1 (2.11)
sinv,z  CosV,T

with periods @, =277V;", j =1, The conditions
det|Z (8)-Z,(0)]=0, j=1,1. 2.12)
are satisfied by virtue the incommensurability ¢, and /3, . Indeed
det|Z,(B8)-Z,(0)|=2(1-cosv,B3,)= 0
since B, —q,&, #0, j =1,1.

Then systems (2.9) allow for ﬂj -periodic solutions

r+ﬂ/

z ()= [Z (t+B)-Z; (T)T jZ (s)g;(s)ds, j =11, (2.13)

Consequently, the general solutions é’ of the systems (2 9) have the form

=2 - -z, )+z,@) =11, (2.14)

where the matricants Zj (r), j= 1,_1 and solutions zZ, (), j= I,_Z have periodicity properties
Ze+va,)=2,@0) j=11, (2.15)
2 e+ p)=2,@) j=11 (2.16)

We must introduce new time variables S5 0, j= l,l and space variables hj, J= 1,_1 related by

relations
0 0 0)_ 0 o0 s _ 17
hj(sj =850, 6, =2, )_ Zj(Sj S, )[41 Z; ]+ Zj(o-j)» J=L1, (2.17)
in order to represent solutions (2.14) using periodic functions with incommensurable periods
a,, ,Bj , ] = 1,/, where Z;.) =z, (S? ), S? are the initial values of the variables Sis ] = l,l.
Obviously, the multiperiodic functions (2.17) present the solutions (2.14) under
Oo,=8,=7, § ? = 7°, moreover, they satisfy equations
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Ooh. Oh, . —
~+——=v . Lh+g (o) j=1l1 (2.18)
os. oo, T T/

J J

with the initial conditions

h,

J

o,=s =" =¢ J'O’ J =11, (2.18°)

By virtue of the properties (2.15) and (2.16) of the matricants ZJ. (7) and the solutions z, (1), the

functions (2.17) have the properties of multi-periodicity
0)_ 0)_ 0 .17
hj(Sj tQ;,0,,6, )_ hj(Sj’Gj + 5,65 )_ hj(sj,aj, j )’ J=LL (2.19)
Thus, we obtained from systems of equations (2.9) to systems of equations (2.18) with initial

conditions (2.18°) by introducing new time variables.
We get the equations (2.9) and their solutions (2.14) from the systems of equations (2.18) - (2.18°) by

substitution o,=8,=1, S? =7’ conversely.

The close relationship between the functions o,=0, (T) and hj = hj (Sj , Jj) of the form
do. dh\t,r) Oh\s.,o ) Ohl\s , o,
G.(T)Zh.(T,T), J J( ): ](J /)+ 1(/ ])
’ ! dr dt 0s, oo,
with o,=8,=7 leads to a transition from the differentiation operator DD to the differentiation operator
p=24 <a(r,t), §> + <e, £> + <e, i> + <v1 h+g(o), £> + <% + %, i>, (2.20)
ot ot 0os oo oh Os 0o Oh
where § =(s,,...,5,), 0 =(0,,...,0,), e = (1,...,1) — [-vector,h = (h,,..., h,), hj = hj(S_/,O'j),
. oOh (8}11 Gh,J oh (ahl 8h,j
j=1 = = :

os \os, e, ) oo oo, o,
Further, we obtain the characteristic
=2 -7")¢" -2+ 2(7) (2.21)
of the matrix-vector equation
dg
——=vI{+g(7r), (2.22)
dr

which is characteristic for equation (2.1) with respect to space variables, based on the coordinate data (2.9)
- (2.16), where Z(7) = diag V4 (). Z, (T)], z2(r)=(z,(t),.... 2,(7)), £° = (g”l",..., é’lo).
We have the first integral
¢ =20 )¢ @)+ ()= u(e"7.¢) (223)
of equation (2.22) from the equation of characteristic (2.21).
Therefore, we obtain the identity
D,u(ro,r,g):o, y(r°,r°,§)=§. (2.24)
Then we have the solution
u(ro,r,g”)zw(,u(ro,r,g”)), (2.25)

of equation (2.1) satisfying the initial condition

. =w()eCOR'), @2.1"

u

for any differentiable function W(g ) € Cée) (Rl )
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. ow : : .
Indeed, since Du = % Dy, by virtue of (2.24) we have Du =0. Thus, (2.25) with the condition

(2.1") is the zero of the operator D .
Further, we have a vector function

h(s -5’ z(0), £’ - ZO): Z(s - so)[é’o - Z(SO)]+ z(o), (2.26)
satisfying the characteristic equation of the operator D of the form
oh Oh
—+—=vIh+g(0) (2.27)
os Oo
with the initial condition
h ‘o‘:s:s" = ;O’

based on our analysis related to relations (2.17) - (2.19) for studying the multi-periodic structure of

characteristic (2.23), where g(U) = (gl (61 ),..., g, (O', )), Z(O‘): (Zl (O'1 ),..., z, (O', )),
Z(s)=diag [Z,(s)s Z,(s))} B=(hes ) b, = h (s, = 5°,2(0°), ¢° = 2(s")) j=L1,

oh (oh  oh )\ oh (on  oh
os \as,os, ) o0 oo, o, )

Obviously, by virtue properties (2.15), (2.16) and (2.19), the matrix Z (S) is periodic with period
a =(a,,...,a,) , and the solution Z(O‘) with period £ = (B,,..., B,).
The first integral of the equation (2.27) is determined from the equation of characteristic (2.26) by the

relation
£ =h(s' —s5,2(s°), & - z(0)).

It's obvious that

Dh(s" —s5,2(s"),{ —2(0))=0, h| __, =¢. (2.28)

U=S=S0

Moreover, we have

Ew(h (S° -s,2(s°),¢ —z(O'))): ag—gl)~5h (so —s,2(s°),{ - Z(O'))= 0,

for any differentiable function w(é’ ) , by virtue of (2.28), at that

w(h (SO —s5,z(s°),¢ — Z(O')))| C=w(¢)

Thus,
LT(SO,S,G,Q’): w(h (so —5,2(5°),¢ — Z(G))) (2.29)
is the zero of the operatorE ,that under 0 = s =72, s’ =7"¢ it becomes the u (ro, T, 4’) zero of
the operator D , where € = (1,...,1) isa / -vector.

Lemma 2.2. Let conditions (2.3) and (2.4) be satisfied. Then the zeros (2.25) of the operator D with
the initial condition (2.1") have a multiperiodic structure of the form (2.29) with the vector function
(2.26), at that

I/_l(SO,S, 0,6 ooiore = u(’[o,’[,é/), (2.30)

h(Ero -er,z(e7’), ¢ —Z(Er))z y(ro,r,g).
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Theorem 2.1. Let conditions (2.2) - (2.4) be satisfied. Then the solution u (2'0, 7,1, g) of equation
(2.1) with the initial condition

u'(t,¢)e CEO(R" < R') 2.1°)

u

is determined by the relation

u(r“,r,t,g”):uo(/i(ro,r,t),u(ro,r,g”)), (2.31)

Az e+ 0,6)= 2", 7,1), (2.32)
(t+qa)§) u( é’) qe’l” (2.33)
has a multiperiodic structure with respect to (z’ 1,8, O') with period (19 ,0,a, 0 ) of the form
LT(TO,T,t;SO,S,G,é’): uo(/i(fo,r,t),h (s° —S,z(so),é’ — Z(O'))), (2.34)
where the vector-function h(S,Z,C) has the form (2.26), e = (1,...,1) is M -vector, € =(1,...,1) is

Z-VQCIOV, moreover

which under the conditions

ul,. YFT_M(TO,T,Z‘,Q/) (2.35)

Y(i ET”

Proof. The form of solution (2.31) of the initial problem (2.1) - (2.1°) follows from the general theory
of the first-order partial differential equations. Special cases of it are given in Lemmas 2.1 and 2.2.

The multiperiodic structure (2.34) of the solution (2.31) is also contained in the indicated lemmas; and
the multiperiodicity is easily verified under the additional conditions (2.32) and (2.33).

The statement (2.35) follows from (2.30).

—_—(_o 0 . . . — .
Note that, U ZM(T ,T,1,8 ,S,G,é’ ) is the solution of the equation Du =0 with the

differentiation operator D .

The proved theorem is the multiperiodic structure of the zeros of the differentiation operator D .

In conclusion, we note that if the conditions (2.32) and (2.33) do not fulfill, then the representation
(2.34) remains the multi-periodic structure of the solution (2.31). But then a definite structure (2.34) does
not possess the periodicity property with respect to 7,7 .

3. The multiperiodic structure of the solution of a homogeneous linear [ -system with constant
coefficients. We consider a homogeneous linear system

Dx = Ax (3.1)
with a differentiation operator [J of the form (1.2) and a constant 72 X 7 -matrix A.

We will put the problem of determining the multiperiodic structure of the solution X of the system

(3.1) with the initial condition

,=u(t,{)e CEO(R" x R"). (3.1°)

To this end, we begin the solution of the problem by studying the multiperiodic structure of the
matricant

X

=T

X(r)=exp[dr] (3.2)
of the system (3.1).
We need the following lemmas to that end.

Lemma 3.1. If f;(l'-l-gj):f;(f), i =17 is some collection of the periodic functions with
rationally commensurate periods: 9}. /0, = vy isa rational number for j,k =1,r, then for these

functions exist a common period 6:

fj(2'+6’): f/(r)’ J :19_’”-
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Indeed, by virtue of rational commensurability exist integer natural numbers ¢ ,..., g, such that
q,0, =...=q.0. =0, which is the required period.

Lemma 3.2. If the real parts of all eigenvalues equal to zero and all the elementary divisors are
simple of the constant matricant Y (T) = exp [[ Z‘], then all the elements of the matrix I are periodic
functions.

Proof. By the conditions of the Lemma 3.2, the cigenvalues are A ([ )= ib,, j= l,_r, where

i = ~/—1 is the imaginary unit; the constants b/. are either equal to zero or nonzero. If it is nonzero, then

each eigenvalue /1/. ([ ) = ibj corresponds to one or more Jordan cells J ; of the form

S _[0 -b
o\, 0

Y(r)=K ah'ag[ellf,...,eI’T]K_l ) (3.3)
where if bj =0, then I, = 0 andif bj # (0, then I, =J, moreover

Then the matricant has the form

v . cosbjr —sin bjz' (b 0)
(r)=¢e" = , \b. #0), 3.4
/ (B)=e sin bj.r cosbjr / 34

K is a matrix of reduction / to the actual canonical form [ = K diag [I R ]K -

We have a complete proof of the Lemma 3.2 from relations (3.3) and (3.4), and the periods of the
elements of the matrix ¥ (T) are determined as y, = 27rbj_]l sy ¥ p = 27z'bj'1 on the basis of the Lemma

3.1, taking into account the commensurability of the periods 272'[);1 , ] =17, p <r Periods Vises?
are rationally incommensurable constants.
Further, cells Y/.k (T ), J, =1,r, of the form (3.4) having the periodicity property with a period 7,
will be considered as cells depending on the variable7 = 7, :
Y/k(Tk+}/k):ij(Tk)’ Je=Lr. 35
Representing each cell (3.4) using the new variables 7 ,..., 7, in accordance with condition (3.5),
from the expression of the matricant (3.3) we obtain a multiperiodic matrix T(f ) =T (Z'] yeers Z‘p) with

period y = (7/1,---a 7,))'

Since

or, ik it
the matrix 1’ (f ) satisfies the equation
DT(7)=1T(7), (3.6)
where the operator D s determined by
13:<é, i>:i+...+i, (3.7)
ot/ O, 0T,

e =(1,...,1) isa O -vector.
Obviously, under 7 = e 7T we have T (é T) =Y (Z') and

— 70 —
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iY(r):iT(ér):lT(ér):11/(1). (3.8)
dt dt
Thus, the multiperiodic matrix 7' (’f ) defines the multiperiodic structure of the matricant ¥ (Z‘ ):
Y(r)= T(rl,...,rp)ﬁ:m:r (3.9)

Lemma 3.3. The matricant Y(T) of the system (3.8) under the conditions of Lemma 3.2 has a multi-
periodic structure in the form of a matrix T(f ) = T(z'1 yeees T, ), which satisfies the system (3.6) with the

differentiation operator (3.7) and along the characteristics T = € T of the operator D turns into Y (Z' )

in other words, these matrices are related by the relation (3.9).
It’s known that from the course of linear algebra the matrix A can be represented in the form

A=KJA)K'=KJ(a+ib)K' =K J(a)K ' +KE(@b)K"' =R+1,
where K is some non-singular matrix for reducing the matrix A to Jordan normal form
J (/1)2 diag [J | (/11 ),..., J, (/Ir )] with Jordan's n -cells J, (/1}.) corresponding to eigenvalues
A, =a + ib}., j= 1,_r ;R=K J(a)K ' is the matrix, J(a) is matrix obtained from the Jordan
form J (/1) by replacing the eigenvalues /Ij with their real parts a =Re Al , j= I,_F,

I =K E(ib)K’1 is the matrix, E(ib)Zdiag[l'blEl,...,ibrEr], b]. :Imﬂj, J =1,_I”, E, is the

unit 72,-cells, j=1,7, moreover, the matrices R and [ are commutative: RI = IR.. Therefore,

4 Ir+R Ir R . .
e"=e" =e e , otherwise, the matricant (3.2) can be represented as

X(r)=Y(r) Z(r), (3.10)
where Y (2') = exp [[ T],Z (Z')z exp [R z’], moreover, along with property (3.8), ¥ (Z' ) satisfies the

equation

diY(z'):AY(z')—Y(z')R. G
T
Indeed, we making the replacement
X =Y(c)z

in the equation

X =AX (3.12)
obtain the equation

7oy (T)[A Y(r)- diy(f)}z |
T

Then, we obtain the identity (3.10) taking into account that 7 =RZ , where Z (z’) = exp [R Z'].

The identities (3.8) and (3.11) establish the connection of the matricant Y (z‘) =exp [[ 2'] with the
triple of matrices A, R, I ; moreover, the matrix [ satisfies the conditions of Lemma 3.2. Therefore,
according to Lemma 3.3, the multiperiodic structure of the matricant X (2’) = exXp [A T ], by virtue of
equality (3.10), is determined by a matrix X (Z’ T ) of the form

X(z,7)= X(T,Tl,..., Tp)z T(Tl,..., 7, )eR’, (3.13)
which is connected by the matricant X (Z' ) , by relation
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)A((r,f)(ﬂ_, = X(7). (3.14)
Thus, the following theorem is proved.
Theorem 3.1. In the presence of complex eigenvalues of the matrix A, the matricant (3.2) of the

system (3.12) has a multiperiodic structure defined by the matrix (3.13) and relations (3.6) - (3.9), and it

along the characteristics T = e T of the operator D satisfies condition (3.14). The matrix T (‘f ) turns
into a constant matrix in the absence of complex eigenvalues.

Now the solution of the objectives set can be formulated as Theorem 3.2.

Theorem 3.2. Let conditions (2.2) - (2.4) be satisfied. Then the solution x(z'o ,T,1, é’) of the problem
(3.1) - (3.1°) defined by relation

x(ro,r,t,;’)z X(r)u(/l(ro,r,t),,u((ro,r,é’))) (3.15)

has a multi-periodic structure in the form of a vector-function

x(r 7,7,t, 8's,0 g“) (r T)u( (r T t) ( S,Z(SO),g—z(O'))), (3.16)

that satisfies equation

DX = A% (3.17)

with the differentiation operator

D=D+D, (3.18)
defined by relations (2.20) and (3.7).
Proof. The representation (3.15) is known from [2], and (3.16) follows from the proved Theorems 2.1
and 3.1. The identity (3.17) can be verified by a simple check.
Now we investigate the question of the existence of nonzero multiperiodic solutions of the systems of
equations (3.1).We begin the study with the simplest cases.
We consider a canonical system with a single zero eigenvalue

dx, dx, dx,
=Y, = -xl 9ecey = n—-19
dr dr dr
which in the vector-matrix form has the form
dx
d_ = E X, (3.19)
r

where E| is the sub-diagonal unit oblique series of the /-th order, x = (X,5.ees X, ).

We introduce a triangular matrix X' (7) with elements of the form of power functions:

1 0 .. 0
T 1 .. 0
X, (7) =
Z_n—l z_n—Z
(n=1! (n=-2)!

and an arbitrary constant vector ¢ = (c,,..., C,) to represent the general solution X of the system (3.19).
Then the general solution of the system (3.19) is represented in the formx = X (7)c.
It easy to see from the structure of the general solution that system (3.19) admits a one-parameter
family of periodic solutions X " of the form
x(r)=X,(7)c’, (3.20)

where ¢” = 0,...,0, C:) , C: is an arbitrary parameter.

— 72 ——
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Next, we consider a system of pairs (x; R x;.' ) of equations of the form

' v dx' dx" -
—t==bx!, —=bx], —+=x, —bx], =X +bx, =11,
dr dr dr dr
which can be represented using the vector X, = (x; R x;.' ) in the form
dx dx. L —
d—‘ =bl x,, d—’ =Ex +blx,, j=1,1,
T T
where E2 is the second-order identity matrix, 7, is the second-order symplectic identity matrix,
b =const #0.
If we introduce a constant block matrix
bl, O O O 0 O
E, b, O .. O O O
o) O E, bl, O 0 O
O O O .. E bl O
O O O .. O E, bl

with blocks 1 2,E2 and second-order zero blocks (), then the system under consideration with a vector

X = ()C1 yeees xz) can be represented in the form

@:J(b)x, (3.21)
dr

which we call a canonical system with a single pair of purely imaginary conjugate eigenvalues
A = (ib,— ib).
We introduce a diagonal block matrix
T°(z) = diag [T,(z),..., T,(7)]
with a block T; (T ) of the form
cosht —siner

sinbr cosbr

T;<r>=(

and a triangular block matrix with elements of the form of power functions:

E, 9, )

E, E, .. O
Y'(r) =
Z_1—1 Z_I—Z

E2
(I —1)! (1-2)!
to represent the general solution X of the system (3.21).

EZ

2
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Then the matricant X “(7) of the system (3.21) can be represented as X "(z) =T (7)Y (1),

and the general solution X (T) is determined by the relation
x(t)=X"(7)c
ith an arbit tant vector € = (C,,...,¢, ), € —(c’ c”) =1,/
with an arbitrary constant vector € =\Cy,...,C, }, ¢, =\C;, C; ), ] =1,L.

We obtain easily a family of @ = 27" -periodic solutions x’ (7) by parameters ¢, and ¢, of the
form
x(r)y=X"(7)c’ (3.22)
with a constant vector ¢* = (0, ., 0,¢, ), C, = (Cl', Cz”) from the structure of the general solution

Now, by replacing X = Kz with a non-singular constant matrix K , we reduce the system (3.1) to the
canonical form

Dz = J(A)z, J(4)=K 4K , (3.1

which consists of subsystems in accordance with Jordan's cells of the matrix A .

Obviously, systems (3.1) and (3.1') are equivalent with respect to the existence of multiperiodic
solutions.

It is also clear that the system (3.1') has subsystems of the form

4
Dz = E.:, (3.1)
or
!
Dz, =J(D)z,, (3.1)
respectively with matrices similar to the matrices of systems (3.19) and (3.21), in the presence of zero or
. . . . . . !
purely imaginary eigenvalue. Obviously, nonzero solutions of (3.20) and (3.22) satisfy the systems (3. 11)
and (3.1)), respectively
Consequently, in the cases under consideration, system (3.1') allows nonzero periodic solutions
z' (7). Then Kz *(7) = x"(7) is a periodic solution of the system (3.1).
Thus, the following theorem is proved.
Theorem 3.3. Under the conditions of the Theorem 3.2, the system (3.1) allowed nonzero
multiperiodic solutions enough for the matrix A to have at least one eigenvalue A = A(A) with the real
part Re A(A) =0 equal to zero.

We have the following theorem from the theorem 3.3, as a corollary.
Theorem 3.4. Under the conditions of the Theorem 3.3, the system (3.1) did not admit the

multiperiodic solution other than trivial, it is sufficient that all eigenvalues of the matrix A have nonzero
real parts.
Since the system (3.1) is (@, @) -periodic, of particular interest is the question of the existence of its

nonzero multiperiodic solutions with the same periods.
The general solution X of the system (3.1) can be represented in the form

x(7,t,¢) = X(v)u(z,t,0), (3.23)
where u =u(7,t,(’) is the zero of the operator D with the general initial condition for 7 =0
x(0,£,8) =u(0,1,8) =u,(1,9),
X (t) = exp[4 7] is the matricant of the system.

Among the zeros of the operator [ there exist multiperiodic ones, in particular, constants by the
Theorem 2.1.
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Theorem 3.5. Under the conditions (2.2) - (2.4), the system (3.1) had (6, @) -periodic with respect
to (7,t) solutions of the form (3.23) corresponding to the multiperiodic zero of the operator D with the

same periods, it is necessary and sufficient that the monodromy matrix X (6) satisfies condition

det[X (6)- E]=0. (3.24)
Proof. Under the conditions of the theorem, its justice is equivalent to the solvability of equation
X(t+0)u=X(t)u (3.25)

in the space of (6, @) -periodic with respect to (7,¢) zeros u =u(7,¢,{) of the operator D .
We arrive at the solvability of the system of equations
[X(@)-E]u=0,
which is equivalent to the condition (3.24) taking into account the properties of the matricant
X(t+60)= X (r)X(0) from the system (3.25).
In conclusion, we note that the fulfillment of condition
det[X (0)-E]# 0 (3.26)
guarantees the absence of such solutions.
We also note that condition (3.24) is a sufficient sign of the existence of the nonzero multiperiodic
solution of the system (3.1).
Theorem 3.6. Let conditions (2.2) - (2.4) and (3.26) be satisfied. Then the system (3.1) allowed
nonzero (6, ®) -periodic solutions of the form (3.23) necessary and sufficient for the functional-

difference equations
u(z+0,t+qw,¢)=[X0) - E[' X(0)[u(z +0,t + g, ) —ulz,t,0)|, ge 2" (3.27)

to be solvable in the space of zeros of the operator D .
Proof. Under the condition (3.26) from the definition of (€, @) -periodicity with respect to (7,7) of

solution (2.23), we have the equation (3.27). We must be to take into account that ©(7,¢,) is the zero

of the operator [D to complete the proof.

If the equation (3.27) has only zero solutions, then, under the condition (3.26), the system (3.1) does
not have a nontrivial multiperiodic solution.

We also note that the fulfillment of the condition

Red.(4)#0, j=Ln
on the non-zero real parts Re ﬂj (A) of all eigenvalues /1/. (A) of the matrix A ensures the fulfillment

of condition (3.26).
In conclusion, we note that on the basis of the multiperiodic structures (2.30) and (3.13) the

characteristics 1(z°,7,{) of the matricant X (7) and by the theorems which proved above, it is easy to
obtain structures of (€, @) -periodic with respect to (7,%) solutions of the system (3.1) expressed in

terms of variables 7,7,5,0,¢,¢ .

4. The multiperiodic structure of an inhomogeneous linear system with operator D. Consider the
inhomogeneous linear equation

Dx = Ax + f(7,t,{) 4.1)
corresponding to the homogeneous equation (3.1), where the F-vector function f(7,f,{) satisfies
condition

f(2'+9,t+qa),§)= f(z',t,é')e Cr(i’j’e)(RxR’” xR’). 4.2)
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Assume that the condition (3.26) is fulfilled and we search for the (6, ®) -periodic with respect to
(7,t) solution x(7,7,{) of the system (4.1) that corresponds to zero u(7,%,{) of the operator D
possessing the property of multiperiodicity with the same periods (&, @) for (7,1).

Therefore, we have the solution

*(z.0,0) = X(Oulet. )+ X0 X () (5. A,z 0 (s, 7. s (@3

with zero u(2'+6’,t+qa),é')=u(z',t,é'), geZ" of the operator ) having the property
x(r+6?,t+qa),§)= x(r,t,é’), qe’Z".

Then the solution (4.3) has another representation
7460
x(7,6,8)=X(r+0)u(r,1,)+ X(c +6) IX’I (5)f (s, A(s, 7 +0,0), (5,7 + 6,0))ds. (4.4)

Further, we obtain

x(7,t,¢)= [)(”1 (r+6)-Xx" (T)F[TXI (s)f (s, A(s,7+60,0), u(s,7+6,8))ds +

+ I X7(s)f (s, ACs,7,0), (s, 7, g“))ds}

T

4.5)
eliminating from identities (4.3) and (4.4) the unknown zero u(7,¢,{ ) of the operator D, where the

reversible of the matrix [X - (T + 49) -X (T )] follows from condition (3.26).
If we accept the notation
f(s,A(s,7,0), a(s,7,¢)), T —>0,

fg(S,/i(SaTat)aﬂ(S’T’g)):{f(s,ﬂ(s,z-+49,t),,u(s,2'+9,§)), 0——>7+86,

then formula (4.5) can be represented in a more compact form
x(r,t,é’):[ (Z'+(9 ] IX fg S,A(8,7,1), (s, g”))ds (4.6)

where ¥ ——> 0 means changes in the variable S from } to O . Obviously, if the system (3.1) does

not have multiperiodic solutions, except for zero, then the solution (4.6) of the system (4.1) is a unique
multiperiodic solution.
Further, we have solutions

X(s,0,7,7,8,¢)=|X [ Ne+6,7+e0)-X (r,f)rx
x jX e)f, (e, A(e,7,0),h(e —s,2(¢),¢ — z(0)))de

4.7)

of the equation o
Dx = Ax+ f(z,t,£)

with the differentiation operator (3.18) from representation (4.6) on the basis of multiperiodic structures
(2.30) and (3.13) of the quantity x(s,7,{) and X (7).

Thus, the following theorem is proved.
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Theorem 4.1. Assume that conditions (2.2) - (2.4), (3.26) and (4.2) are satisfied, and the
homogeneous system (3.1) does not have multiperiodic solutions except zero. Then the system (4.1) has a
unique (6@, ®) -periodic solution (4.6) for which the (a,p,y,0,®)-periodic with respect to

(s,0,7,7,t) structure (4.7) satisfies equation (4.8) with the differentiation operator (3.18).

In conclusion, note that we can derive the multiperiodic structure of the general solution (4.3) of the
system (4.1) similarly to formula (4.7).

Conclusion. A method for studying the multiperiodic structure of oscillatory solutions of perturbed
linear autonomous systems of the form (1.1) - (1.2) was developed. The main essence of the method for
studying the multiperiodic structures of solution of the system under consideration is a combination of the
known methods [1-3] with the methods used in [15, 16] for the autonomous systems. In this case, some
system input received perturbations depending on the time variables 7, ¢. In conclusion, the sufficient
conditions for the existence of the multiperiodic solutions of linear systems (1.1) - (1.2) with the
differentiation operator D in the directions of a toroidal vector field with respect to time variables and of
the form of Lyapunov's systems with respect to space variables were established. Moreover, relation (4.6)
is an integral representation of the multiperiodic solution of the system, and (4.7) determines its
multiperiodic structure. We also note that the integral representation given here differs from the analogue
given in [15, 16].
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'K Ky6anos aTeIHarsl AKTe0e OHIPIIIK MEMIIKETTIK YHUBEPCUTETI, AKToOe, Kazakcran;
2
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BEKTOPJIBIK OPIC BOMBIHIIIA JADOEPEHIHUAJIIAY OHEPATOPJIBI KO3JBIPBLIFAH ChI3bIKTBI
ABTOHOMJbBIK KYHUEJIEPAIH KOIMNIEPUOATHI LIEINIMJAEPIH 3EPTTEY

AnHotamus. Toyenci3 KeHICTIK aifHBIMaJbICBIHA KaTHICTHI JIAMyHOB >Kyifeci TYpiHZAEri JKoHE YyaKbIT alHBIMAJIBICHIHA
KaTBICTHl KOIMEPHOATHl TOPOMIANABI TYPIETi BEKTOPJBIK epicTep OarbIThl OoibiHma D muddepenmuangay onepaTopist
CBI3BIKTHI J)KYHe KapacThIpbutasl. JKylieHi aHBIKTaHTBHIH OapIIblK OepinreHaep He yaKbIT alfHBIMAIBICBIHAH KOIIEPHOATH TOye i,
He oJapiaH Tayenci3 Gomansl. JKyleHiH aBTOHOMIBIK KaF[aifbl OYpBIHFBI KYMBICTapAa KapacTeIpsUFaH. by skarmaiina xyieni
AHBIKTANTBIH Keifbip OepinreHnepre yakpIT aHHBIMAIBICBIHAH TOYeNAl KO3IBIPTKEI OepinreH. ParuoHanmsl emmeHOSHTIH
JKUUTIKTEPAIH JKEKEIEHIeH IIEPUOATHI KO3FAIBICTAPBIHBIH CYHNEPIIO3HIMACH TYPIHAETi )KyHe apKbUIbl CHIATTalFaH i3AeNiHmi
KO3FaJIbIC Typajbl CYpaK 3epTTeineni. bacrankel ecentep xoHe KO3FAIBICTAPBIH KOIIEPHOATHUIBIFEI Typallbl €CeNTep 3epTTeNe .
Ecenrtiy memimin aHbIKTay Ke3iH/e XKyiie OacTankbl HYKTeeH IIBIFATHIH XapaKTepPUCTUKAa MaHAMbIHAA HHTETpallaHaThIHEL, OaH
KeifiH GacTamksl OepiireHaep XapakTepUCTHKAIBIK JKYHEeHIH OipiHIII MHTerpanfapbiMeH aybICTHIPBUIATHIHBI Oenrini. CoHbIMEH
I37eTIHAl MenriM KeJaeci KOMIOHEHTTepACH Typajasl: D omepaTOpbIHBIH XapaKTepUCTHKAJIBIK KYHECIHIH XapaKTepUCTUKAChl MEH
OipiHIN MHTETpalgaphl, XXKyHeHiH 0oc Mylleci MEH MaTpHIaHTHl. Byl KOMIIOHEHTTEepHiH 3epTTeNyIli >KyHeMeH CHIIaTTaJFaH
KO3FaJIBICTBIH KOIIIEPUOATHUIBIK TaOUFATHIH ally Ke3iHJe MaHbI3Ibl MarblHACHI Oap OGONATHIH IEPUOATH XKOHE IEPHOATH eMecC
KYPBUIBIMIIBIK Kypaymsuiapsl Oonansl. Illemimal  epexmeneHreH KeNmeprHoATH Kypaylibulap apKbUIBl CHIIATTay bl MICIIIMHIH
KOIMEPHOATHUIBIK KYPBUIBIMBI en aTaiFaH. O keIl alHBIMAIBIIEl ePHOIb! (PYHKIUSIIAp MEH Oip alfHBIMAJIBUIBI KBa3HIICPHOITHI
(yHKIMSUIApBIHBIH - OaiimaHbeicel Typansl bopnblH TaHBIMan TeopeMachl HerisiHAe jxy3ere acaasl. CoOHBIMEH, JKyitenepai
AHBIKTAITBIH OepiureHnepi KO3IBIPBUIFAH JKarjaiia OIpTeKTi jkoHe OipTekci3 >KYHelmepiiH >Kalmbl >KOHE KeIepHOITHI
HICIIIMJIePIiHIH KOIEepHOATH KYPBUIBIMBI HAKTHI 3epTTenred. Ocputaiima D onepaTOpbIHEIH HOJIJAEpl MEH XKYHEHIH MaTpHUIaHThHI
3epTTenreH. bBipTekTi jkoHe OipTekci3 »KyifenepiiH KeNmepHoATHl HIemiMIepiHiH Oap Ooiysl koHe OonMaysl IIapTTapbl
TaralbIHAJIFaH.

Tyiiin ce3gep: Kemmepuonrsl memriM, aBTOHOMABIK JKyie, nuddepeHnmannay omnepaTopsl, JIAIIyHOB BEKTOPIBIK epici,
KO3JIBIPTKBI.
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UCCJIEJOBAHUE MHOT'OITEPHOUYECKHAX PEIIEHUMA BO3MYIIIEHHBIX JINHENHBIX
ABTOHOMHBIX CUCTEM C OIIEPATOPOM JJU®PEPEHIIUPOBAHMUSA 110 BEKTOPHOMY I1OJIIO

Annotanusi. PaccmatpuBaercst juHelHas cucrema ¢ oneparopomauddepenpoBannss D 1o HanpaBIeHUIM
BEKTOPHBIX MOJEH BHJA CUCTEeMBbl JISMyHOBa OTHOCHTENBHO HPOCTPAHCTBEHHBIX HE3aBHCUMBIX MEPEMEHHBIX U
MHOTOINEPUOIUYECKOTO TOPOUJAIBHOIO BUAA OTHOCUTENIBHO BPEMEHHBIX IE€PEMEHHBIX. Bce BXOJHBIE NaHHbBIE
CHCTEMBI JINOO MHOTONEPUOMYHO 3aBUCAT OT BPEMEHHBIX NEPEeMEHHBIX, JIMOO OT HUX HE 3aBUCST. ABTOHOMHBIN
Cilyyail CHCTEMBI paCCMOTpPEH B Hamlel paHHel pabore. B naHHOM ciiydae HEKOTOpBIE BXOJIHBIC JaHHBIE MOIYYMIN
BO3MYIIEHHS, 3aBUCAIIME OT BPEMEHHBIX MNepeMeHHbIX. Mcciemyercs BOHNpoC O MPEACTABICHMHM HCKOMOIO
JIBUDKEHUSI, OMKCAHHOTO CUCTEMOM B BHJE CYNEPIO3ULHUM OTACIbHBIX MEPUOJUUECKUX ABMKEHUN PallMOHATIBHO
HECOU3MEPUMBIX 4acTOT. M3ydaroTcss HaualbHbIE 3aJaud U 3aa4d O MHOTONEPHOAMYHOCTH ABM>KeHUH. M3BecTHO,
YTO NpHU ONPEAEICHUU PELICHUH 3a/1a4 CUCTeMa MHTETPUPYETCs BAOJb XapaKTEPUCTUK, HCXOASIIUX U3 HAYAIbHBIX
TOYEK, a 3aTeM, HavyaJbHbIC JaHHbIC 3aMEHSIOTCS IEPBBIMH MHTErpajlaMH XapaKTEPUCTUYECKHX CHCTEM. TakuM
00pazoM, HMCKOMOE pEUIEHHE COCTOMT W3 CIIAYIONIMX KOMIIOHEHTOB: XapaKTEPHCTHK W IEPBBIX HHTErpajoB
XapaKTepPUCTHIECKUX CHCTEM oreparopa D, MaTpUIlaHTa U CBOOOIHOTO YjeHa CaMOl CHCTEMBI. JTH KOMIIOHEHTEHI, B
CBOIO OYepeAb, UMEIT MNEPHUOAUUYECKHE M HENEPUOJUYECKUE CTPYKTYpHBIE COCTaBISIOIIUE, KOTOPBIE UMEIOT
CYIECTBEHHOE 3HAYEHUE NPH PACKPBITHH MHOIONEPUOJUYECKOM NMPHUPOAB ABMKEHHH, ONUCAHHBIX HCCIERLyeMOI
cucremoil. IlpencraBineHue pemieHuss C  BBLACICHHBIMM MHOIONEPUOJUYECKUMHU COCTABISIOIIMMU HAa3BaHO
MHOTONEPUOIUIECKON CTpyKTypol pemeHus. OHO peanusyeTrcs Ha OCHOBE M3BECTHOW TeopeMbl bopa o cBs3u
NepruoaANYecKol (YHKIIMHM OT MHOTHX NEPEMEHHBIX M KBA3UIEPHOINUECKON (QyHKIMU OmHOW mepemMeHHo#. Takum
oOpa3zomM, Oojee KOHKPETHO, HCCIEAYIOTCS MHOTOINEPHOIMYECKHE CTPYKTYPHl OOIIMX W MHOTONEPHOANYECKUX
peleHN OMHOPOJHBIX U HEOJHOPOAHBIX CUCTEM C BO3MYILIEHHBIMH BXOJHBIMU JaHHBIMU. B TakoM ngyxe n3ydarorcs
Hynu omneparopa D W MaTpULIAHT CHUCTEMBL. YCTAHABIMBAIOTCA YCIOBHUS OTCYTCTBUS M CYIECTBOBaHUS
MHOTONEPUOIUIECKUX PEILIEHUH KaK OJHOPOJHBIX, TAK U HEOAHOPOIHBIX CUCTEM.

KiroueBble ciioBa: MHoromneproauyeckoe pelieHre, aBTOHOMHas CHCTeMa, orepaTop AudQepeHpoBaHys,
JIsmyHOBa BEKTOpPHOE MOJIE, BO3MYILEHHE.

Information about authors:

Sartabanov Zhaishylyk Almaganbetovich — Doctor of Physical-Mathematical Sciences, professor, K.Zhubanov Aktobe
Regional State University, Aktobe, Kazakhstan, sartabanov42(@mail.ru, https://orcid.org/0000-0003-2601-2678;

Omarova Bibigul Zharbolovna — PhD-student, K. Zhubanov Aktobe Regional State University, Aktobe, Kazakhstan,
bibigul_zharbolkyzy@mail.ru, https://orcid.org/0000-0002-3267-2501

Kerimbekov Akylbek — Doctor of physical-mathematical sciences, Professor, Kyrgyz-Russian Slavic University, Bishkek,
Kyrgyzstan, akl7@rambler.ru, https://orcid.org/0000-0002-7401-4312

REFERENCES

[1] Kharasakhal V.Kh. (1970) Almost-periodic solutions of ordinary differential equations [Pochti-periodicheskie resheniia
obyknovennykh differentsialnykh uravnenii]. Alma-Ata, Nauka (in Russian).

[2] Umbetzhanov D.U. (1979) Almostmultiperiodic solutions of partial differential equations [Pochti mnogoperiodicheskie
resheniia differentsialnykh uravnenii v chastnykh proizvodnykh]. Alma-Ata: Nauka (In Russian).

[3] Kulzhumieva A.A., Sartabanov Zh.A. (2013). Periodic solutions of the systems of differential equations with
multidimensional time [Periodicheskie resheniia system differentsialnykh uravnenii s mnogomernym vremenem]. Uralsk: RITs
ZKGU (in Russian).ISBN 978-601-266-128-6.

[4] Sartabanov Zh. (1989) Pseudoperiodic solutions of a system of integro differential equations, Ukrainian Mathemstical
Journal, 41:1, 116-120. DOI: 10.1007/BF01060661

[5] Berzhanov A.B., Kurmangaliev E.K. (2009) Solution of a countable system of quasilinear partial differential equations
multiperiodic in a part of variables, Ukrainian Mathematical Journal,61:2, 336-345. DOI:10.1007/s11253-009-0202-4

[6] Kenzhebaev K K., Abdikalikova G.A., Berzhanov A.B. (2014) Multiperiodic Solution of a Boundary-Value Problem for
one Class of Parabolic Equations with Multidimensional Time, Ukrainian Mathematical Journal, 66:5, 719-731.
DOI:10.1007/511253-014-0967-y

— 78 ——



ISSN 1991-346X 6. 2019

[7] Abdikalikova G., Berzhanov A. (2014) On multiperiodicity and almost periodicity of solutions of boundary value
problem for system of parabolic type equation, AIP Conference Proceedings, 1611, 58-62. DOI:10.1063/1.4893804

[8] Muhambetova B.Zh., Sartabanov Zh.A., Kulzhumieva A.A. (2015) Multiperiodic solutions of systems of equations with
one quasi-linear differential operator in partial derivatives of the first order, Bulletin of the Karaganda University-Mathematics,
78:2, 112-117.

[9] Kulzhumiyeva A.A., Sartabanov Zh.A. (2016) On reducibility of linear D-e-system with constant coefficients on the
diagonal to D-e-system with Jordan matrix in the case of equivalence of its higher order one equation // Bulletin of the Karaganda
University-Mathematics, 84:4, 88-93.

[10] Kulzhumiyeva A.A., Sartabanov Z.A. (2017) On multiperiodic integrals of a linear system with the differentiation
operator in the direction of the main diagonal in the space of independent variables, Eurasian Mathematical Journal, 8:1, 67-75.

[11] Kulzhumiyeva A.A., Sartabanov Zh.A. (2017) Reduction of linear homogeneous D-e-systems to the Jordan canonical
form, News of the National Academy of Sciences of the Republic of Kazakhstan. Series Physico-Mathematical, 5:315, 5-12.

[12] Sartabanov Z.A. (2017) The multi-period solution of a linear system of equations with the operator of differentiation
along the main diagonal of the space of independent variables and delayed arguments, AIP Conference Proceedings, 1880,
040020-1 - 040020-5. DOI: 10.1063/1.5000636

[13] Kulzhumiyeva A.A., Sartabanov Zh.A. (2018) General bounded multiperiodic solutions of linear equations with
differential operator in the direction of the mail diagonal, Bulletin of the Karaganda University-Mathematics, 92:4, 44-53.
DOI:10.31489/2018M4/44-53

[14] Kulzhumiyeva A.A., Sartabanov Z.A. (2019) Integration of a linear equation with differential operator, corresponding to
the main diagonal in the space of independent variables, and coefficients, constant on the diagonal, Russian Mathematics, 63: 6,
29-41. DOI:10.3103/S1066369X19060045

[15] Sartabanov Z.A.,Omarova B.Z. (2018) Multiperiodic solutions of autonomous systems with operator of differentiation
on the Lyapunov’s vector field, AIP Conference Proceedings, 1997, 020041-1 - 020041-4. DOI:10.1063/1.5049035

[16] Sartabanov Zh.A., Omarova B.Zh. (2019) On multi-periodic solutions of quasilinear autonomous systems with operator
of differentiation on the Lyapunov's vector field, Bulletin of the Karaganda University-Mathematics, 94:2, 70-
83.DOI:10.31489/2019M2/70-83

[17] Kerimbekov A., Abdyldaeva E. (2016) On the solvability of a nonlinear tracking problem under boundary control for the
elastic oscillations described by fredholmintegro-differential equations, IFIP Advances in Information and Communication
Technology, 494, 312-321. DOI: 10.1007/978-3-319-55795-3_29

[18] Bergamasco A.P., Dattori da Silva P.L., Gonzalez R.B. (2017) Existence and regularity of periodic solutions to certain
first-order partial differential equations, Journal of Fourier Analysis and Applications, 23:1, 65-90. DOI: 10.1007/s00041-016-
9463-0

[19] Joyal P. (1998) Invariance of Poincaré-Lyapunov polynomials under the group of rotations, Electronic Journal of
Differential Equations, 1998, 1-8.

[20] Fonda A., Sfecci A. (2017) Multiple periodic solutions of hamiltonian systems confined in a box, Discrete and
Continuous Dynamical Systems — Series A, 37:3, 1425-1436. DOI:10.3934/dcds.2017059

[21] Asanova A.T. (1998) Almost periodic solution of a semilinear parabolic equation, Differential Equations, 34:12, 1705-
1707.

[22] Assanova A.T. (2017) Periodic solutions in the plane of systems of second-order hyperbolic equations, Mathematical
Notes, 101:1, 39-47. DOI:10.1134/S0001434617010047

[23] Asanova A.T., Dzhumabaev D.S. (2004) Periodic solutions of systems of hyperbolic equations bounded on a plane,
Ukrainian Mathematical Journal, 56:4, 682-694. DOI:10.1007/s11253-005-0103-0

[24] Assanova A.T., Alikhanova B.Zh., Nazarova K.Zh. Well-posedness of a nonlocal problem with integral conditions for
third order system of the partial differential equations. News of the National Academy of Sciences of the Republic of Kazakhstan.
Physico-Mathematical Series. Vol. 5, No. 321 (2018), PP. 33-41. https://doi.org/10.32014/2018.2518-1726.5 ISSN 2518-1726
(Online), ISSN 1991-346X (Print)

[25] Dzhumabaev D.S., Bakirova E.A., Kadirbayeva Zh.M. An algorithm for solving a control problem for a differential
equation with a parameter.News of the National Academy of Sciences of the Republic of Kazakhstan. Physico-Mathematical
Series. Vol.5, No.321 (2018), PP. 25-32. https://doi.org/10.32014/2018.2518-1726.4 ISSN 2518-1726 (Online), ISSN 1991-346X




News of the National Academy of sciences of the Republic of Kazakhstan

NEWS

OF THENATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN
PHYSICO-MATHEMATICAL SERIES

ISSN 1991-346X https://doi.org/10.32014/2019.2518-1726.75
Volume 6, Number 328 (2019), 80 — 89

UDC 52:531.51;52:530.12
IRSTI29.05.41;29.05.45; 41.17.41

B.A. Zhamil’*, K.Boshkayev1’2’3, H. Queved01’4, Zh.A. Kalymoval’2

' Al-Farabi Kazakh National University;
NNLOT, al-Farabiave.71, 050040, Almaty,Kazakhstan;
*Energetic Cosmos Laboratory, Nazarbayev University,
KabanbayBatyrave.53, 010000,Nur-Sultan, Kazakhstan;
*Instituto de CienciasNucleares,Universidad Nacional Autonoma de Mexico,
AP 70543 Mexico,DF 04510,Mexico

*e—mailzzhami.bakytzhan@gmail.com
ON SOME EFFECTS IN THE STRUCTURE OF WHITE DWARFS

Abstract. We review the effects of general relativity, finite temperatures, nuclear composition and rotation
which make a substantial contributionto the structure of white dwarfs.First, the mass-radius, mass-central density
relations and mass, density profiles of a white dwarf with total mass1.415 Mg, are constructed both in Newtonian
gravity and general relativity, which clearly show that the general relativistic effects are significant for massive white
dwarfs close to the Chandrasekhar mass limit, consequently, in strong gravitational fields.Second, hot white dwarfs
are studied in the framework of general relativity. Basic parameters of white dwarfs such as the central density,
pressure, mass, radius and etc. are calculated. It is shown that the effects of finite temperatures play a key role in low
mass white dwarfs. Third, cold white dwarfs are investigated within general relativity employing the Salpeter
equation of state. Finally, we investigate the equilibrium configurations of uniformly rotating white dwarfs, using
Chandrasekhar and Salpeter equations of state in Newtonian gravity and plot mass-radius, mass-central density
relations. It is demonstrated that the effects of rotation are essential in the structure of white dwarfs in allmass range.

Key words: white dwarfs, general relativity, finite temperature, nuclear composition, rotation.

1. Introduction

A white dwarf or degenerate dwarf is the final stage in the evolution of normal (main sequence) stars
with masses from 0.08 Mg to 8 Mg[1, 2, 3] (even to 12 Mgaccording to some studies [4]), on the other
hand, it is one of the classes of compact objects. The lower limit of a main sequence star mass is
associated with the impossibility of the occurrence of a thermonuclear helium synthesis reaction. There are
two forces which are counterbalanced with each other in the hydrostatic equilibrium configuration of a
non-rotating white dwarf: the outward force of interior pressure gradient and the inward force of gravity.
In the case of a rotating white dwarf, the centrifugal force is included.

There is no nuclear fusion in the interior of the white dwarf like a normal star. Consequently, it is not
the thermal pressure force keeping the white dwarf in hydrostatic equilibrium.The pressure support in the
white dwarf is provided by a degenerate electron gas, whereas most of the mass density is due to a
nondegenerate gas of ions[3].

The maximum mass of a non-rotating white dwarf cannot exceed the Chandrasekhar mass limit of
1.44Mgbeyond which even the degenerate electron gas cannot prevent the white dwarf from gravitational
collapse [2] or type lasupernova explosion[5], whichtakes place as a result of accretion or merger.In turn,
type la supernova explosion is used as a standard candle to measure intergalactic distances, understand the
past and future expansion of the universe and study the nature of dark energy. From this point of view, it is
relevant to study properties of white dwarfs and construct their realistic model.
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The paper is organized as follows. We introduce the equations of stellar structure in Sec. 2, namely
the equation of hydrostatic equilibrium, mass balance equation for static (non-rotating)white dwarfs in
Einstein’s relativistic theory of gravity and Newtonian gravity, respectively; with the Hartle’s approach
that describes the equilibrium configuration of rotating white dwarfs. In Sec. 3, we consider some crucial
effects such as the effects of general relativity, finite temperatures, nuclear compositions and rotation.The
conclusions are given in Sec. 4. The material and results which were considered here can be used in
further studies of astrophysics, cosmology and astronomy.

2. Equations of stellar structure

One can derive the Tolman-Oppenheimer-Volkoff (TOV)equation [6] of hydrostatic equilibrium and
mass equation for a non-rotating (spherically symmetric configuration) star within the framework of
general relativity in the following form

dP(r) _ _ Gm@)p(r) P(r) 4nr3p(r) _26m@r)\"!
dr r2 (1 + p(r)cz)( m(r)c? )(1 rc? ) > (1)
a
I = amr?p(r).p(r) = <L, @)

whereG is the gravitational constant, ¢ is the speed of light andP (r),m(r)andp(r)are the pressure,
mass and density profiles, respectively, which depend on the radial coordinate of r.Egs. (1) and (2)
reduces to the expressions

ar(r) _  Gm(r)

e e p(r), 3)
d

—723) = 4mr?p(r) 4)

in their Newtonian limit.

The equations of stellar structure of slowly and uniformly rotating axially symmetric configurations
of white dwarfs can be obtained by using the Hartle’s approach in Einstein’s relativistic theory of gravity
and Newtonian gravity [7-9]. In the Hartle’s approach, the axially symmetric configuration is given for a
uniform angular velocity sufficiently slow so that the changes in pressure(P,,; = Ps; + 6P), energy
density(&,.o¢ = &5 + 0¢), and gravitational field(®,,; = @g + d®@)are small. These small changes are
considered as perturbations of the known non-rotating solution. The field equations are expanded in
powers of the angular velocity and the perturbations are calculated by retaining only the first- and second-
order terms|[7, 8].

The equation of hydrostatic equilibrium and mass balance equation is supplemented by the equation
of state and boundary condition to determine the stellar structure. The equation of state is necessary to
describe the properties of the interior matter of a white dwarf. It determines the dependence of the total
pressure on the total density for the case of a one-parameter equation of state, P = P(p), where P is the
pressure and p is the density of matter. This form of the equation of state is appropriate when the
temperature is a known function of the density inside the star [7]. In this work, we have used the
Chandrasekhar equation of state at zero and finite temperatures and the Salpeter equation of state, which
takes into account the nuclear composition, electrostatic interaction, Thomas-Fermi correction, and inverse
beta decay threshold. Details of these equations of state can be found in Refs. [10-13].

2.Results and Discussions

Effects of general relativity.We solve numerically the equations of stellar structure employing the
Chandrasekhar EoS (u = A/Z = 2)with given boundary conditions and obtain the main parameters of
white dwarfs, for instance, mass, radius etc. We also construct the dependence of the mass on the radius in
Fig. 1 as well as the dependence of the mass on the central density in Fig. 2.The solid curve indicates
mass-radius relation in Newtonian gravity, the dashed curve in general relativity. As it can be seen from
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Figure 1, the masses of white dwarfs increase by decreasing their radii, which is the main difference of
white dwarfs from the main sequence stars. This feature shows the contribution of relativistic and quantum
corrections in the EoS.

0 5 10 15 20 25
R[10° km]

Figure 1 — Mass-radius relations

The mass of a white dwarf also increases by increasing the central density (see Fig. 2). However, it
cannot increase infinitely and exceed the Chandrasekhar mass limit M, = 1.44 Mg[5, 6]. The difference
between Newtonian and Einstein’s gravity is clearly seen for the case of massive white dwarfs. It is related
to the presence of general relativistic corrections in the equations of stellar structure.

107 106 10° 1010 1012
pe [g/em’]

Figure 2 — Mass-central density relations

The growth of mass strengthens gravitational field of white dwarfs. This, in turn, increases pressure,
hence in general relativity the maximum mass is less than in Newtonian gravity and it is achieved at finite
density. That central density defines stability of white dwarfs in general relativity.

In Newtonian gravity, a white dwarf reaches the maximum mass when the radius tends to zero and the
central density and pressure tend to infinity. But, it is impossible, because there is a critical value of
central density and central pressure, and consequently, a critical value for the maximum mass. If the value
of the central density exceeds this critical value, the white dwarf collapses to a neutron star, or explodes as
a type la supernova depending on the nuclear composition, temperature etc.The neutronization threshold
density is chosen as a critical central density, and the corresponding maximum mass was calculated for
white dwarfs composed of '’C in Ref. [14]. The maximum mass M,,,, of a static white dwarf is
1.447 Mg in Newtonian gravity, and 1.425 Mg, in Einstein’s relativistic theory of gravity.

The significance of general relativity for stars can be described by the compactness parameter
z =1,/R, whereR is the radius of a star, 7y = 2GM/ c? is the gravitational radius (or the Schwarzschild

radius), M is the total mass of the star. The compactness parameter of massive white dwarfs close to the

— g2 ——
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Chandrasekhar mass limit is roughly equal to z~0.001 [14]. One has z~0.3 for neutron stars, z = 1 for
black holes [15]. That is, the more compactthe object, the more noticeable the role of general relativity
[14, 16-18].

We have also reproduced independently the results obtained in the work of Carvalho et al, where they
have shown the importance of general relativistic effects for white dwarfs. Following the work [19], in
Fig. 3, we show the mass profile of the white dwarf for a fixed total mass M = 1.415 Mg, where the
importance of general relativistic effects is conspicuous. The total radius of the white dwarf for a fixed
total mass1.415 Mg, is 938.65 km in general relativity, and 1558.78 km in Newtonian gravity. In Fig. 3
the bluehorizontal dotted line indicates the fixed total massM = 1.415 Mg,; the red solid curve indicates
the mass profile in Einstein’s relativistic theory of gravity; the red dashed curve indicates the mass profile
in Newtonian gravity.

1.4
112

1.0
M g

Mo o6

0.4
0.2

U'OO 500 1000 1500

r [km]

Figure 3 — Mass profiles for a fixed total mass M = 1.415 Mg,

0 200 400 600 800 1000 1200
r [km]

Figure 4 — Density profiles for a fixed mass ofM = 1.415 Mg

In Fig. 4 we plot the density profile of a white dwarf with fixed mass M = 1.415 Mg. The red solid
curve denotes the general relativistic density profile; the red dashed curve denotes the Newtonian density
profile. From Fig. 4, one can notice that the mass density of the general relativistic white dwarf is larger
than the Newtonian one in the central region, where the major part of the white dwarf mass is
concentrated. The central density of the white dwarf with a fixed mass 1.415 Mgis pSR = 1.61 X
10'%/cm? in general relativity, pXS = 4.08 X 10°g/cm? in Newtonian Gravity [19].

Effects of finite temperatures.In Fig. 5, we have constructed the mass-radius relations of general
relativistic non-rotating white dwarf cores at finite temperaturesT = (10%,10°,10°,107,4 x 107,10%) K
using the Chandrasekhar equation of state (u = 2)at finite temperatures [20, 21]. From Fig. 5, it can be
seen that the effect of finite temperatures increases with decreasing mass and it is significant for low-mass
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white dwarfs. This indicates that the substance of low-mass white dwarfs cannot be considered completely
degenerate.

147~ ' ' ' —
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1.2} \ -- T=I0°K
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Mg \\\\ o~
0.6 O T = —
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Figure 5 — Mass-radius relations at finite temperatures

Figure 6 shows the radius-central density and mass-central density relations at selected temperatures,
where the effects of finite temperatures are more pronounced with a decrease in the central density, and
with increasing central density, these effects weaken. That is, the effects of finite temperatures are
especially important for white dwarfs with low central densities.

100F— . ; 1.00 ! ~
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£ ]| v 020
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2| \\ 1 0027 i
100 10° 107 10° 10! 1000 10° 10° 10° 107
p [g/cm’] p [g/em’]
a) b)

Figure 6 — Radius-central density (a) and mass-central density(b)
relationsat finite temperatures

Effects of nuclear composition.We have considered static white dwarfs by employing the Salpeter
equation of state in general relativity and compared them with the results of the Chandrasekhar equation of
state.

The Salpeter equation of state allows one to take into account the electrostatic interaction, the
Thomas-Fermi correction, and the nuclear composition of white dwarfs. In Figures 7-8, mass-radius,
mass-central density and central density-radius ratios were constructed for cold white dwarfs in the
general theory of relativity (TOV equation). The plots were constructed for different nuclear compositions
of 4He, 12C, 180, 29Ne, 24Mg, 28Si, 5SFe (for the Salpeter EoS) and u = 2 (for the Chandrasekhar EoS)
[22]. The figures show that the heavier the element, the lower the upper limit of the mass of white dwarfs.

— 84 ——
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Figure 7 — Mass-radius relations for different nuclear compositions
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Figure 8 — Central density-radius (a) and mass-central density (b) relations
for different nuclear compositions
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In addition, it should be noted that in the Salpeter equation of state, the effect of neutronization
(inverse beta decay) for a white dwarf with a uniform nuclear composition was taken into account. This
effect sets a limit on the upper limit of the central density(1.37 x 10'1g/cm? for 3He, 3.90 x 10*°g/cm3
for 12C, 1.90 x 10°g/cm? for 180, 6.21 x 10%g/cm3 for 29Ne, 3.16 x 10°g/cm3 for 23Mg, 1.97 x
10%g/cm3 for 28Si, 1.14 x 10%g/cm? for 3¢Fe) and, therefore, on the mass of white dwarfs[1].

Effects of rotation. There are three forces that act on any rotating star: the outward force pressure, the
inward force of gravity and the centrifugal force. We follow the Hartle approach [7] and [9, 23], in order
to derive the main equations of stellar structure of a rotating star in the case of uniform and slow rotation.
The point of Hartle’s approach consists in considering a spherically symmetric non-rotating compact
object as starting point to construct a rotating star model. The structure equations are obtained up to the
second order in the angular velocityQ = /G M. /7. ,G is the gravitational constant, M,,; is the total of
the star, and 7, is the equatorial radius of the star. Afterwards, we calculate the main parameters of a slow
and uniform rotating configuration and plot the relations of the main parameters. We show the
significance of the rotation effects for the entire range of mass.
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’ Static '°0 WDs
0.4t Rotating 150 WDs
— Static *°Fe WDs
0.2f -- Rotating “*Fe WDs

1 2 3 5 7 10 15 20
7, [10° km)]

Figure 9 — Mass-equatorial radius relations
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Figure 10 — Mass-central density relations

Fig. 9 shows the mass and equatorial radius relation. We have selected two equations of state: the
Chandrasekhar equation of state with average molecular weight 4=2, and the Salpeter equation of state for
86
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pure helium *He, carbon '°C, oxygen '°O and iron *°Fe white dwarfs, as limiting cases [23]. The equatorial
radius for a static case reduces to the static radius. All solid curves indicate non-rotating (static) white
dwarfs, whereas all dashed curves indicate rotating white dwarfs at the mass shedding rate. One can see
that depending on the equation of state and nuclear composition, white dwarfs display different mass-
radius relations.

In Fig. 10, the mass of a white dwarf is shown as a function of the central density. The mass is given
in units of one solar mass and the central density is given in g/cm3. As expected, rotating white dwarfs
have larger masses with respect to their static counterparts. In all our computations we restricted the
maximum values of the central density to the values of inverse f-decay density to fulfill the stability
condition of white dwarfs [17, 24, 25].

5. Conclusions

We considered the structure of non-rotating and slowly rotating, cold and hot, classical and general
relativistic white dwarfs in hydrostatic equilibrium. In particular, the mass-radius, mass-central density,
radius- central density etc. relations were constructed for white dwarfs using the Chandrasekhar and
Salpeter equations of state. We studied the effects of general relativity, finite temperature, nuclear
compositions and rotation inthe structure of an equilibrium configuration of white dwarfs. We concluded
that:

o the effects of Einstein’s general relativity are significant for massive, high density and small
radius white dwarfs close to the Chandrasekhar mass limit;

e the finite temperatures considerably affect the structure of white dwarfs at low densities, that is,
they play a major role for low-mass white dwarfs;

e the nuclear composition, electrostatic interaction andThomas-Fermi correction are importantfor
white dwarfs in all mass range;

e the neutronization threshold is critical near the Chandrasekhar mass limit;

o the uniform rotation are crucial for all white dwarfs in the entire range of mass.

It would be interesting to compare and contrast the observational data for white dwarfs with the
theoretical results presented here in analogy to Ref. [26]. In addition, it would be fascinating to investigate
the spectral features of white dwarfs in a wide range of X-rays, optical and ultraviolet etc. variabilityfound
in symbiotic binary systems in analogy to Ref. [27]. That will be the issue of future studies.
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AK EPTEKEJII KYJIIBI3JAPIBIH KYPBLIBIMBIHJIAFBI
KEWUBIP Y®PEKTTEP TYPAJIbI

B.A. )KeMn"*, K.A. BomxaeB"z"", 3.KeBe)10"4, KA. KaJIBIMOBal’z

18J1—CDapa61/1 aTeiaarel Kazak ¥JITTHIK YHHUBEPCHUTETI,
2ATYH3, On-Dapabu gaH. 71, 050040, Anmatsl, Kazakcran;
*Sueprusutsik Fapeim 3eprxanacer, Hasap6aes Yuusepcureri,
Kabanb6aii bareipnan.53, 010000, Hyp-Cynran, Kazakcran;
4ﬂapom,n< Frutbimmap MHCTUTYTHI, MeKcrKa ¥ITTHIK ABTOHOMIIBIK Y HUBEPCHUTETI,
AP 70543, Mexuko, DF 04510, Mekcuka

AHHOTAIMS. AK eprexeini >KYIIbI3AapAblH KYPbUIBIMBIHA YJIEC KOCATBIH JKalIbl CAJIBICTHIPMAIBUIBIK
TEOPHSCHI, IIEKTI TeMIlepaTypa, SOPOJBIK KypaM >XKoHE aiHally[blH ocepliepikapacTeIppuiabl. bipiHmineH, macca-
paiMyc, Macca-opTalblK THIFBI3ABIK KAaThIHACTAPHI JKOHE Macca, THIFBI3ABIK Npoduiibaepi TonblK Maccacel 1.415
Mgpak eprexeitni xyaasi3 yiriH Hpl0TOH rpaBUTalUACHIHAA, COHIOAN-aK MKaNIbl CadbICTRIPMATIBIIBIK TEOPUSICHIHIA
TYpFBI3BULABL. Onap >Kaimbl CajJbICTHIPMANIBUIBIK TEOPHUSCHIHBIH acepiepl YaHmpacekap MaccajblK IIeriHe KaKblH
YJIKEH MaccaJarbl aK epreKeiyii sKyJIIbl3ap YIIiH, IeMeK, KYIUTI IPaBUTAlMSUIBIK OPICTep YIIiH MaHBI3bl eKeHIH
alikplH Kepcereli. EKIHINIJIEH, BICTBIK aK EPreeiyii KYIAbI3Aap >Kallbl CalBICTHIPMAJIbUIBIK TEOPHSICHIHBIH
meHOepinae 3eprreneni. OpTaibIK THIFBI3ABIK, KBICBIM, Macca, paguyc »oHe T. 0. CHIKTBI aK eprexeiini
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KYIABI3OAPABIH  HETI3ri mapaMeTrpiiepi ecemTemiHmi. Maccachl a3 aK eprexeil  Kyigsi3gapia IIeKTi
TeMIepaTypaHBIH dCEPiH eCKepy KaKeTTUTITi KepceTinai. YIIiHIIIAeH, CYBIK aK eprexeiini xyinsnaap Canrnurepaiy
KYH TeHJAEyiH KOJIaHa OTBIPHIN, >KaJIlbl CANBICTHIPMANBLIIBIK TCOPHUSCHIHBIH IeHOepiHae 3eprreneni. CoHBIHAA,
HobtotoH rpaButanusceiHaa Yanzapacekap MeH CannuTeplHiH KyH TeHIEYiH KOJZaHAa OTBIPHIN, OipKasbIITHI
aiffHaNaThIH aK epreXXeinl >KYIObI3apAbIH Tele-TeH KOH(QHUIypauusulapblH 3epTTeNli XKoHEe Macca-paanyc, mMacca-
OPTAJIBIK THIFBI3ABIK KAaTBIHACTAPBIH TYPFBI3BUIABL. AMHAMyABIH ocepiepi MaccaHblH OapiblK MOHAEpIHIE aK
ePreKeiIl KYJIIBI3IAPIBIH KYPHUIBIMBI YIIIIH MaHBI3/IBL.

Tyiiin ce3mep: aK eprexeiiii KyJIapI3aap, JKabl CaabICTHIPMAIBIK TCOPUSCHI, IIEKTI TEMIIEPATypa, SIPOIIBIK
Kypamsl, aliHaILy.

B.A. Kamu"", K.A. Bomkaes", J. Keseno' u 7K.A. Kaabimosa'?
O HEKOTOPBIX D®PEKTAX B CTPYKTYPE BEJIBIX KAPJINKOB

'Kasaxckuit HanmonanbHblil YHuBepcuTeT M. anb-Dapabu,"HHJIOT,
mp. anb-Dapadu 71, 050040, Anmatser, Kazaxcran
3JTaGoparopust DHepreriueckoro Kocmoca, HasapGaes YHusepenrer,
mp. Kaban6aii batsipa 53, 010000,Hyp-Cynran, Kazaxcran
4I/IHCTI/lTyT SAnepusix Hayk, HartmonanbHeli ABTOHOMHBIHY HUBEpCUTET MeKCHKH,
AP 70543, Mexuko, DF 04510, Mekcuka

AnHoTtanusi. PaccMoTpeHO BiusiHME 00LIeH TEOPUM OTHOCHTEIBHOCTH, KOHEYHBIX TEMIIEPaTyp, SIEPHOTO
COCTaBa M BpAaLIEHHs, KOTOpble BHOCST CYIIECTBEHHBIH BKJIaJ B CTPYKTYpY O€JbIX KapiMKOB. Bo-mnepBbIX,
MIOCTPOEHBI COOTHOIIEHHS Macca-paanyc, Macca-leHTpanbHast TNIOTHOCTh U MPOQUIN IMIIOTHOCTH OEI0ro Kapinka ¢
mosHOH Maccort 1,415 M@ Kak B HPIOTOHOBCKOI TpaBHUTAIlMU, TaK W B OOMIEH TEOPHH OTHOCHUTEIFHOCTH, KOTOPHIE
YETKO ITOKA3bIBAIOT, YTO OOIINE PEIATUBUCTCKUE 3G (OEKTh! BaXKHBI U1 MACCHBHBIX GEJIbIX KapiIHKOB OKOJIO Iperena
Mmaccel YaHpacekapa, ClIeI0BaTeNIbHO, B CHIIBHBIX I'DaBUTAIIMOHHBIX MOJSIX. BO-BTOPBIX, ropsune Oenble Kapiauku
U3y4YeHBl B PaMKaX OOILIEH TEOPUH OTHOCUTEIBHOCTH. BBIYNCIIEHBI OCHOBHBIE MAapaMeTphl OEJbIX KapiIWKOB, TaKHe
KaK HCHTpajJbHasA IJIOTHOCTb, JAaBJICHHC, Macca, paauyCc U T. . HOKa3aHO, YTO BJIMSAHUC KOHEYHBLIX TEMIICPATYpP
HUIpacT KJIOYCBYIO POJIb B MaJIOMaCCUBHBIX 66.]'1])1)( KapJIMKax. B-TpeTbI/lX, XO0JIOOAHBIC Oenble KapJIMK1 UCCIIEAYIOTCA B
paMkax oOIieii Teopuu OTHOCHUTEIHHOCTH C MCIIOJBb30BaHHEM ypaBHeHus coctosHus Cannutepa. B 3aximoueHue
UCCIIEJOBaHbl PaBHOBECHBIE KOH(PHIYpallMd PaBHOMEPHO BPAIIAFONIMXCS OCNIBIX KapJIMKOB, MCIOJB3Ys YpaBHEHUS
cocrosiHuss Yanapacekapa u Cannurepa B HBIOTOHOBCKOW IPaBUTAllMM M IOCTPOEHBI 3aBUCHUMOCTU Macca-paauyc,
Macca-LIeHTpaIbHas TIOTHOCTh. [lokazano, uyto 3¢dexTs! BpameHns He0OX0IUMBI B CTPYKTYpe OENBIX KapJINKOB BO
BCEM JMana3oHe Macc.

KiroueBble cjioBa: Oenble KapiWkd, oOmIas TEOpHs OTHOCHTENBHOCTH, KOHEYHas TeMIleparypa, SACpHBIH
COCTaB, BpaIllCHHE.
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SPECTRAL DECOMPOSITION OF A FIRST ORDER
FUNCTIONAL DIFFERENTIAL OPERATOR

Abstract. In this paper we study spectral properties of a boundary value problem of a first-order differential
equation with constant coefficients and a deviating argument. By spectral properties we mean completeness and basis
property of the system of eigenfunctions and associated functions of the boundary value problem, as well as the
Volterra property.

Keywords: equation with deviating argument, completeness, basis property, Volterra property, Sturm-Liouville
operator, Riesz basis.

1. Introduction
In applications the following eigenvalue problem is often occurred in a more general form [1, p. 520]:

Au = ASu .

If the operator S is determined by the equality (Sf )(x) =f (— x), let us say, for all f € L,, then the
following generalized spectral problem occurs:

Au = Au(—x).

In the case when 4 is a differential operator, we get a differential equation with deviating argument.

Theory of differential equations with deviating argument is the subject of a huge number of works,
among which we note only monographs by A.D. Myshkis [2], L.E. Elsgolts and S.B. Norkin [3], which
provides an extensive bibliography. Study of the Sturm - Liouville type boundary value problems for an
equation with deviating argument is the subject of a monograph by S.B. Norkin [4]. In this and other
works, the spectral questions of differential equations with deviations in higher terms, where there is no
spectral parameter, are investigated. Only a few works are devoted to the case when the deviating
argument is contained in a term with a spectral parameter. In this regard, we note the works of T.Sh.
Kalmenov, S.T. Akhmetova and A.Sh. Shaldanbaev [5], A.M. Ibraimkulov [6], S.T. Akhmetova [7].

Apparently, main theorems of the theory of solvability of differential equations with deviating
(delayed) arguments were formulated in the monograph by A.D. Myshkis [2].

T.Sh. Kalmenov [5] laid the foundation to a systematic study of spectral questions for a first-order
differential equation with a deviating argument of the indicated form. These ideas were developed in [7].

Apparently, generalized spectral problems of the type

Au = Au(—x),

where A is some differential operator of the first order, were first investigated, at the initiative of T.Sh.
Kalmenova, in [5]. In [7], various spectral properties of the generalized spectral problem were studied:
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y'(x)=Ay(1-x), 0<x<l1,
ay(0)+ py(1) =0,

including conditions of self-adjointness, Volterra property and basis property.
Theorem 1.7.7 of the above paper [7] states the Riesz basis property of the system of root functions of
the considered generalized spectral problem for

(a|+|8)a* - p*)=0.

Results of this work were transferred to the interval [-1 1], by using another method, in [8], where the
final solution to basis property questions of root functions of the generalized spectral problem is given

u'(=x)=Au(x), -1l<x<I1,
u(-1)=au(l).

From results of this work it follows that any such correct boundary-value problem is either Volterra or
the system of its root functions forms a Riesz basis.
The method of [5] was generalized in [9], in particular, in this paper two abstract theorems on

eigenvalues and root vectors of the operators 4 and A”, which may be of independent interest, are
proved. We give their statement.

Consider a linear operator 4 in the Hilbert space H. We suppose that domain D(4) of the operator 4 is
dense in H. Then there exists an operator 4*, which is conjugate to the operator 4. Let spectrum of the
operator 4 be discrete. The following proposition holds.

Theorem 1.1. Let number /15 be an eigenvalue of the operator 4°. If the number A, is not eigenvalue

of the operator A4, then 4 is an eigenvalue of the operator A.
In the next theorem we consider the case of root vectors.

Theorem 1.2. Let /1(2) be an eigenvalue of the operator 4. If A, is not eigenvalue of the operator 4,
then any root vector u, of the operator A? (if, ofcourse, it exists), corresponding to the eigenvalue ﬂé , Is

an associated element of the operator 4, corresponding to the eigenvalue A, .

In the work of A.M. Ibraimkulov [6] completeness of the root vectors of a second-order equation was
studied. The studies of this author were continued in [10] - [14].

Among recent studies we can note works of W.Watkins [15—16], in which questions on solvability of
one-dimensional differential equations with involution were considered, A.P. Khromov and his followers
[17-18], which considered solvability of integral and differential equations in partial derivatives with
involution.

The variable separation method for solving partial differential equations is based on the spectral
theory of one-dimensional differential operators. Spectral theory of self-adjoint and non-self-adjoint
ordinary differential operators, which originated in the bowels of mathematical physics equations and
began with the classical works of Sturm, Liouville, Steklov and others, has received quite complete
development over the past century. The spectral theory of self-adjoint ordinary differential operators is
almost complete. In the field of the spectral theory of non-self-adjoint ordinary differential operators,
significant results on completeness and basis property of eigenfunctions and associated functions were
obtained in the works of M.V. Keldysh [19], V.A. Ilyin [20-25], M. Otelbaev [26], A.A. Shkalikov [27],
Radzievsky [28] and many other mathematicians.

Theory of basis property of systems of eigenfunctions and associated functions of non-self-adjoint
ordinary differential operators, proposed by V.A. Ilyin, got rapid development. A fairly complete idea
about development of the theory of basis property by V.A. Ilyin was given in review articles [29-30].

Compared with the spectral theory of ordinary differential operators, the spectral theory of one-
dimensional differential operators with involution is in its infancy. Apparently, the first works on the
spectral theory of one-dimensional differential operators with involution were carried out by initiative of
T.Sh. Kalmenov [31-35] in the last decade of the present century. These studies were continued in the
cycle of works by M.A. Sadybekov and A.M. Sarsenby [36-41]. Over the past decade, researchers' interest
91 =——
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in differential equations with deviating arguments has grown markedly, as evidenced by publications [42—
58]. Theory of bases is described in detail in [60—63].

In this work, we continue the studies begun in [5].

Problem Formulation. Find a spectral decomposition of the operator

Au=u'(1—-x), x €(0,1), ()
D(A) = {u(x) € c*(0,1) n €[0,1]: au(0) + pu(1) = 0}, 2

where «, 8 are arbitrary complex numbers, satisfying the condition:
la| + |81 # 0. 3)

2. Research Method.
The method is based on the following theorem of N.K. Bari [58].
Theorem. If the sequence {1,[)]-} is complete in a Hilbert space H, it corresponds to the complete
biorthogonal sequence {cpj} forany f € H
" 2 w 2
=l (Fw)l” <o Zi|(f )] <o “4)

then the system {1/) j} forms a Riesz basis of the Hilbert space H.

Therefore, we first show completeness of the system of eigenfunctions of the operator (1) - (2); then
we find complete biorthogonal systems of functions and prove inequalities (4).

2.1. On spectrum of the operator.

Consider the following boundary value problem:
y'(1—x) = Ay(x); x € (0,1), (5)
ay(0) + By(1) =0 (6)

where «, 8 are arbitrary complex numbers, satisfying the condition (3), and A is a spectral parameter.
It is easy to note that a general solution of the equation (5) has the form

y(x, 1) =A [cos A (% — x) —sinA (% — x)] (7)
where A # 0 is an arbitrary nonzero constant.

Putting (7) into the boundary condition (2), we have

A A A A
au(0) + pu(1) = aA (cosz —sin E) + BA (cosz + sin E) =

A A
—4A [(a +B)cos — (@ f) sinz] — A°A(A) = 0,
since A # 0, therefore
A A
A = (a+pB) cosz— (a—p) sinE =0.

Assuming, that a? — B2 # 0, we get
a—p #0, a+f #0,=>

tg%=%, %n=nn+arctg2tg,:>
An = 2nm + 2arctg “f 'B.
a—p
Lemma 2.1. If
at—pB*+0, ®)

— 92
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then the boundary value problem

y'(1—x) = Ay(x); x € (0,1), (5)
ay(0) + By(1) =0 (6)

has infinite set of eigenvalues
A, = 2nm + Zarctg%, n=04+1,+2,.. 9)

and the eigenfunctions corresponding to them
yn(x) =4, [cos An G — x) —sini, G - x)] ,n=0,+1,%2,.. (10)

where A,, are arbitrary constants.
All eigenvalues are simple, i.e. if A, is an eigenvalue, then A(4,,) = 0 and A(1,,) # 0, where the icon

(') means the derivative with respect to the spectral parameter A.
There are no associated functions.
Proof. From the condition of Lemma it follows that « + § # 0, a — 8 # 0, then from the equation

AV = (a+pB) cos%— (a—pB) sin% =0,

we have
A a+f
tg E = a—p
This equation does not have any roots only in two cases:
Zig=iL

This condition holds only when @ = +if, i.e. a? + 2 = 0, which is possible due to the condition of
Lemma 3.1.

In all other cases our equation has roots, which are given by the formulas

a+pf
Ap = 2nm + 2arctg——, n=20,+1,+2,..
a—p
By (7) we find the corresponding eigenfunctions:

yn(x) = A, [cos An G - x) —sini, (% — x)] (10)

where A,, are arbitrary constants.
If A is a multiple root of the equation A(4) = 0, then the system of equations

{A(;t) =0,
A =0
implies that a? + $2 = 0, that is also impossible.

Indeed,

A = (a+pB) cos%— (a—p) sin% =0,
1

A = >

(a+pB) sin%— (a—pB) cos% =0,=>
(a+pB) cos%— (a—p) sin% =0,

(a—p) cos%+ (a+pB) sin% =0.




News of the National Academy of sciences of the Republic of Kazakhstan

Since this system of equations has a nontrivial solution, then its determinant will vanish, i.e.
p @B —@=p)
a—pf a+p
Definition 2.1. If u(x) is an eigenfunction of the boundary value problem
Au=u'(1-x) = dulx);x € (0,1),
au(0) + pu(1) =0,
then solution of the boundary value problem
Bv=v'(1—-x) — v(x) = u),
av(0) + Bv(1) =0
is called associated function of this boundary value problem.

Now we show that if the condition a* — 8# # 0 holds, our boundary value problem (5) - (6) does not
have associated functions.

Let u(x) be an eigenfunction of the boundary value problem (5) - (6), and v(x) is its corresponding
associated function. Then differentiating (5) - (6) by the spectral parameter A, we have

w'(1—x) =2 +ulx), au(0)+pu(l) =0, =>
(1 —x)—Au=u(x), au(0)+ pu(l)=0.

Consequently, the difference z(x) = 1(x) — v(x) is an eigenfunction of our boundary value problem
(5) - (6). Then, obviously, the function

=(@+p)+(@-p?*=2@*+p* =0.

u(x) = v(x) + z(x)
is an associated function of our boundary value problem. We prove that it is not possible. Indeed,

au(0) + pu(l) =0 = |u(x) =A [cos)l G - x) —sinA (% — x)” =

—A( A '/1)+A( A _A)_
= COS2 SlI‘l2 ,8 COS2 Sll’l2 =

A A
=A [(a + ) cosz —(a—p) sinz] =A-AQQ).
Differentiating this formula by the spectral parameter 4, we get

d .
— [au(0) + pu(D)] = A+ A),

a1(0) + pu(l) = A-AQ1) # 0,
where A is an eigenvalue of the boundary value problem (5) - (6).
2.2. On completeness.

Lemma 2.2. If

a* —p*+0, ®)

then eigenfunctions of the boundary value problem
y'(x) =2y(1 - x);x € (O,1), (%)
ay(0) + By(1) =0 (6)

form a complete system in the space L?(0,1).
Proof. Let {y,},n = 0,+1, 12, ... be a system of eigenfunctions of the boundary value problem (5) -
(6). We assume that

1 1
fmyn(x)dx =0, fmy_n(x)dx =0,n=0,+1,42,...
0 0

then

fm [cos(Znn + 2¢) (% - X> — sin(2nm + 2¢) (% - x)] dx =0,
0

— g4 ——
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fm [cos(Znn —2¢) (% - X> + sin(2nm — 2¢) (% - x)] dx =0,
0

where
B . a+p
¢ =arctg_— 5
Supposing t = % — x, from the first formula we have
1
x=§—t, dx = —dt,=>
1/2
_r1
j f (E — t) [cos(2nm + 2¢)t — sin(2nm + 2¢) t](—dt) =
-1/2
1/2
/1
= f f (E — t) [cos(2nm + 2¢)t — sin(2nm + 2¢) t]dt = 0; (12)
-1i/2
Similarly, we obtain
1/2
_r1
= f f (E — t) [cos(2nm — 2¢)t + sin(2nm — 2¢) t]dt = 0. (13)
-i/2
Summing up equalities (12) and (13), we get
1/2
_r1
j f (E — t) [2 cos 2nmt cos 2t — 2 cos 2nmt sin 2¢t]dt = 0,
-1/2
1/2
_r1
f f (E — t) (cos 2¢t — sin 2¢t) cos 2nmt dt = 0,n = 0,1,2, ...
-i/2
In this formula supposing 2nt = x, we have
X _dx
-2’ Con
fj:f(% - %) (cos% — sin %) cosnxdx =0, n=0,1,2, ... (14)

Further, subtracting the formula (13) from (12), we get

1/2
_/1
f f (E - t) [—2sin 2nm - sin 2¢t — 2 sin 2nmt - cos 2¢t]dt = 0,=>
-i/2
1/2
/1
f f (E - t) [cos 2¢t + sin 2¢t] sin 2nmt dt = 0, n=12,.. (15)
-i/2

Now from (14) we have
+1T 1
_ x Px . Px o
f f(z — 2n> (cos o sin - )cosnxdx =0.=>

-1




News of the National Academy of sciences of the Republic of Kazakhstan

In this formula assuming , we obtain
—x =&, dx = —-dé, =>

+m
(1 ¢ P ¢
- f f(§+ Zn) (cos—+ sm?) cosnédé = 0,=>
-1
(1, ¢ £ ¢
= %
f f(Z + 2n> (cos - + sin - )cosnfdf =0,
-
or denoting ¢ by x, we get
+m 1
= % px . Px _ _
f f (2 + 27‘[) (cos - + sin - )cos nxdx =0, n=0,12, ...
-1

Adding (14) to (16) we receive
G- +f( t) o ox TGrE)-TG-5) e

T 2

-cosnxdx = 0.

The function in the integral in (17) is even, therefore

Vs
_ x _ X
f (Pf cosqo— +Qf sin(p—) cosnxdx = 0, n=20,12,..,
T T
0
where

FG-)*+7G+3) FG+3)-7G-3)

,Qf (x) =

Pf(x) =

cos— + sin—| -
T

(16)

(17

Due to completeness of the system of functions {cos nx},n = 0,1,2, ... in the space L?(0,m), we have

_ px _ . px
P — —=0
f cos - +Qfsmn

Now we transform the formula (15). Assuming t = —x, we get
1/2

f f(% + x) (cos 2¢x — sin 2¢x) (—dx) =

-1/2
1/2

_/1
=+ x| (cos 2¢px — sin 2¢px)dx = 0.
2
-i/2

Consequently, we have a pair of the formulas
flﬁzf(% - x) (cos 2¢x + sin 2¢x) sin 2nmxdx = 0,

1
f_zlf(% + x) (cos 2¢x — sin 2¢x) sin 2nmxdx = 0.
2

(18)

(19)
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Subtracting the formula (18) from the formula (19), then dividing the result by 2, we obtain

lf Fe+x)-7(-7) FE+x)+7(G-%)

> cos 2¢px — > sin 2¢px| -
-1/2
-sin2nmxdx =0, n = 1,2, ... (20)
The function in the integral in (20) is even, thus
fol/z(chos 2¢x — Pf sin 2<px) sin 2nmxdx = 0, 21
where
=1 =1 =1 = (1
o TG -TG-x) o G +7(G-%)
Qf(x) = > Pf(x) = 5 :
Assuming t = 2mx, we change the variable in the formula (21), then
_ t _ dt
X = o X T o
n[z(1, t (1 t (1, t (1 t
f PG+ 7G5) ot TGHs)+7G-5) o],
2 T 2 T
0

-sinntdt = 0, n=12,...

Due to completeness of the system of functions in the space L?(0, ), we have

Fr2)-7E2) g FEr)fCo2) g

2 p- > sm? = 0.
Consequently,
(1 «x =(1, x (1, x =(1 x
FG-3) +f(5+;)cosﬂ+f(z+;) ~FG5) e _ 0,
2 T 2 T
(1, x (1 x (1, x (1 «x
Lf(#%)”(z—;) px FGra)-FG5)  ex_
sin— — cos— =0
2 T 2 T
Since the determinant of this system
px . Px
cos—  sin— X x
A= (p7§c Z)x =—cosz(p——sin2(p—=—1¢0,
sin— —cos— n n
T T
then
(1 x (1 X (1 x (1 X
FG-2) 7 G G*2)-7G-2)
=0, =0.
2 2
Summing up these formulas, we get f (% + %) = 0 almost for all x € [0, ], consequently, almost for
all x € [0,1] we have the equality f = 0, that is required to prove.
2.3. On the conjugate boundary value problem.
We find conjugate boundary value problem to our boundary value problem
Ay =y'(1—x) = Ay(x),x € (0,1); ®)
ay(0) + By(1) = 0. (6)

Let z(x) € D(LY), i.e. belong to the domain of the conjugate problem, then we have the formula
(Ay,z) = (y,A*2), vy € D(A), z € D(AM).
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Expanding this formula and integrating by parts, we find D(A™).
1

(4y,2) = f Sy (Z@ dx = (Sy',2) = (v, 52) = [S2(x) = z(1 — 0)| =
0
1

1 1
= [s7ay = 5231 - [ D yx = HT=2 -y, - [ G2 yCddx =
0 0

0
1

= Z0)y(1) — 2(Dy(0) + f 70— 0y()dx.

0
Equating to zero, outside the integral term, we compose a system of equations:

{ ay(0) + By(1) =0
z(1D)y(0) —z(0)y(1) = 0.
Since the system of equations has a non-trivial solution, then the determinant vanishes, i.e.

—az(0) — fz(1) = 0, 2z(0) + z(1) = 0,= @z(0) + fz(1) = 0.

From the equality
1

.47 = [ ) 7 —xdx
we have ’
Atz=z7z(1-x)
consequently, conjugate boundary value problem has the following form:
Atz=2z'(1-x) = uz(x), x € (0,1); (5)"
az(0) + fz(1) = 0. 6)"
It is easy to note that this problem similar to the boundary value problem (5) - (6). Since (@)* —

(,[?)4 =0 < a* — p* = 0, then the conditions on its solvability are also similar. In particularly, Lemma
2.1 yields the following Lemma 2.3.

Lemma 2.3. If
@*-(B*#0 (8)"

then the boundary value problem (5)" - (6)" has infinite set of eigenvalues:
Um = 2mT + 2arctg g m=0,+1,42,.. 9)"
and their corresponding eigenfunctions:
Zym(x) = B, [cos Um G — x) — sin G - x)] m=0,+1,%2,.. (10)"
where By, are arbitrary constants.

All eigenvalues p,, are simple.
There are no associated functions.

Lemma 2.4. If

@~ (8)" =0 (8)

then eigenfunctions {z,,} of the boundary value problem
Atz=27'(1-x) = uz(x), x € (0,1); (5)"
az(0) + fz(1) =0 (6)"

form a complete system in the space L2(0,1).
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2.4. On the biorthogonal system
Lemma 2.5. If the functions
1 1
yn(x) = A, [cos An (E — x) —sin A, (E — x)] , n=0,+1,+2,..
are eigenfunctions of the boundary value problem
Ay =y (1—x) =Ay(x), x € (0,1); (5)
ay(0) + By(1) =0, (6)
then the functions
1 - /1 =1
Zp(x) = A—n [cos An (E — x) —sin A, (E — x)]
are eigenfunctions of the conjugate boundary value problem
Atz =2z'(1—x) = pz(x), x € (0,1); 5)
az(0) + fz(1) = 0; (6)

moreover, we have the formula

n Zm) = Spms
where 6, is the Kronecker symbol.

Proof.
(yn: Zm) =

S S RN L [ S L e e
- [ st ) s () ) s 3
- [l Gt s ()i 3] -
oo () o (s ()
s (o ) -

= fl [cos()ln — ) G - x) —sin(1,, + 4,,,) (% — x)] dx =
0

sin(4, — 4,,) G - x) ' cos(4, + 1) (% - x) '

Ay —Am An+ 245
0 0
_ _ A a+pf
~ ZSinAn Am _ Sin/‘{nzlm 7n=n7'[+aT'Ctga_'B _
Ay —Am An=Am An —Anm
2 =n-m)m
2
sin(n — mm
_sin(n—mm) _

(n—m)r
when n # m.
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If n = m, then

o Ym) = fi [Cos A, (% - x) _sini, (% ~ x)]z e
0

- [} [1-2sin (= x)eosta (5] -
) sindy (5 —x|cosdy (5 —x )| dx =

oSy 1- 2x)]

1 1
=f [1—sind, (1 —2x)]dx = [x =1
0 24, 0

2.5. On basis property
Definition 2.1. Sequence {(p j} of vectors of the Banach space B is called basis of this space, if each

vector x € B is expended uniquely in a series

X = z Cj X ll}]
j=1

converging by the norm of the space B.

Any bounded invertible operator transforms any orthonormal basis into some other basis of the space
H. The basis {1/)1-} of the Hilbert space H, obtained from the orthonormal basis by using such
transformation, is called basis equivalent to orthonormal or the Riesz basis.

Theorem (N.K. Bari). If the sequence {1,[) j} is complete in the Hilbert space H, it corresponds to a
complete biorthogonal sequence {1/) j} and for all f € H

Fal () <o Sl (o)l <o @

then the system {1/) j} forms Riesz basis in the space H.

Using this theorem, we prove basis property of the system of eigenfunctions of our boundary value
problem

Ay =y (1—x) =Ay(x), x € (0,1); (5)
ay(0) + By(1) =0, (6)

where a, 8 are arbitrary constants, satisfying the condition
at —p*+0. (8)

and A is a spectral parameter.

Our sequence is complete (see Lemma 2.2) in the space H = L?(0,1), and it corresponds to a
biorthogonal sequence {z,} (see Lemma 2.5), which is also complete in H (see Lemma 2.4), therefore, it
only remains for us to prove inequalities (4):

Let

an = (f.y) = [ - Fa(0)dx, by = (f,2,) = [ f()Z, (x)dx. (22)

In our case

<

Yo (x) = (1" :cos An (% — x) —sin i, (% - x)

-1 1 )
Zp(x) = (—=1)" [cos 1, (E — x) —sini, (E — x) .
First we transform the integrals (6).

a, = (1" flf(x) -cos i G - x) —sinl, (% - x>_ dx =
0 L |

=(=1"- J;lf(x) cos A, (%—x) dx — (=1)" J:f(x) sin 4, (%—x) dx;
1

t==-—
2 X

dt = —dx
—— 100 ——

N

= flf(%— t) cos A, t(—dt) =

folf(x) cos A, (%—x) dx =

2
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1
= lef (E - t) [cos 2nmt cos 2@t — sin 2nmt sin 2¢t]dt =

2

_| —ont,  t=2 dt—dx|—
= |X = 41T, _27_[; _27_[ -
+1T 1 x px . . px dx
:f f(———) [cosnx-cos——smnx-sm— — =
- 2 2m T n
1 " 1 x Px
- (———)cos—cosnxdx—
2m)_, 2 2w T

1 (" (1 x) Qx p
o _nf > " o sm” sinnx dx;

The system

1 1 cos nx sinnx
—sinx

Verr'  Nmo T Am Vo

forms orthonormal basis of the space H = L?(0,1). Based on this fact, we estimate the coefficients a,and
b, (see (22)).

X @x cosnx
a, = 2\/_-]- )cos?x -2
1 (™™ /1 x\ . @x sinnx
2\/_ (——2n>sm?x N dx,
Rea, = fﬂ ——i>cosﬂxcosnxdx—
LW 2 T NE
1 [t 1 x\ . @x sinnx
2\/_ f(——ﬁ)sm?x N dx, n+0
Let
w2 PG e Rof (2= 2 )sin®2
2w \/_ n/ @
Then

+m 1 +m
Rea, = \/_E.[ u(x) cosnx dx — ﬁ,f v(x)sinnxdx = a, —B,,n#0
-1 -1

If n = 0, we have

1 (1 x) ox
aO_ZT[ _nf cosn X,

2 2m
1 (" 1 x px
Reay = Ef Ref (E - E) costx,
@
1 +7 Ref ———)cos—
ap=—| ulx)dx= f 2z “dx =
0 v_f_ (dx = = e
x px Rea,
=_ _ ——)cos—dx = ,= Rea =a\/§.
f 3 cos T dx =~ 0 = @
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Further,
|Rean| < |an| + |Bnl, =
|Rean|® < (lan| + 1BnD? < lanl? + 2lan] X |Bal + 1Bal* <
< laul? + 1Bul? + lanl? + 18al? < 2(lanl® + 1821,
|Reay| < V2 |ayl, |Reay|? < 2|ay|?.
Consequently,

D IReay|? <2 (Z|an|2 * Z|ﬁn|2> < 2(ljull? + Iv]1?) < oo
n=0 n=0 n=1

Similarly, we have
Z [Ima,|? < o.
n=0

o0 o0
Z|an|2 - Z|1man|2 + |Reay,|? < w.
n=0 n=0

Estimation of the series Y.oo_o|by, |? is carried out similarly.

Therefore,

We have proved the main Theorem 3.1., and Theorem 3.2 is its corollary.
3. Research Results.

Theorem 3.1. Suppose that

a*t—p*#0, (8)

then the system of eigenfunctions of the boundary value problem
y'(1—x) =2y(x);x € (0,1), (5)
ay(0) +By(1) =0 (6)

forms Riesz basis in the space L?(0,1), i.e. we have

f0) = XS, 7)) y (),
Converging in the space L?(0,1), where

Yn(x) = (1" [cos An (% - x) —sini, (% — x)],

/1 — /1
Zp(x) = (=" [cos An (E — x) —sini, (E — x)],
A, = 2nm + 2arctg %, n=04+1,+2,.. 9)

and f(x) is an arbitrary element in the space L?(0,1).
Theorem 3.2. If a* — f* # 0, then for any element u(x) € D(A) we have the spectral expansion

Au = Ztg;tn(u: Zn) yn(x) (11)
converging in the space L?(0,1), where
An = 2nm + 2arctg %, n=0,+1+2,.. )
z,(x) = (=" [COSE (% — x) —sind, G — x)] (10)"
Yn(x) = (1" [cos An (% — x) —sini, G — x)] (10)

Theorem 3.2. is the main result of this work.
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4. Discussion.

Formula (11) is not possible if there are associated vectors, the well-known Kesselman - Mikhailov
theorem [61- [62] states that, not the system of eigenvectors, the system of root vectors is basic, and this is
significance of the results of this work. Formula (11) can find application in electrical engineering,
information theory, crystallography, and signal transmission theory. It can be useful in study various
boundary value problems by the method of variables separation.

5. Conclusion.

1) Operator (1) - (2) is not semi-bounded;

2) There is an alternative: either the boundary value problem (5) - (6) is Volterra i.e. has no
eigenvalues, or the system of its eigenvectors forms a Riesz basis of the space L2(0,1).
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MULTIPERIODIC SOLUTIONS OF LINEAR SYSTEMS
INTEGRO-DIFFERENTIAL EQUATIONS WITH
D_-OPERATOR AND ¢-PERIOD OF HEREDITARY

Abstract. The article explores the questions of the initial problem and the problem of the multiperiodicity
solutions of linear systems integro-differential equations with an operator of the form
D, =0/0t+c, 0/t +...+¢, /ot c=(c,...,c, )— const and with finite hereditary period & = const >0 that

describe hereditary phenomena. Along with the equation of zeros of the operator [ are considered linear systems

of homogeneous and inhomogeneous integro-differential equations, sufficient conditions are established for the
unique solvability of the initial problems for them, both necessary and sufficient conditions of multiperiodic
existence are obtained by (z,¢) with periods (9, @) of the solutions. The integral representations of multiperiodic

solutions of linear inhomogeneous systems are determined 1) in the particular case when the corresponding
homogeneous systems have exponential dichotomy and 2) in the general case when the homogeneous systems do not
have multiperiodic solutions, except for the trivial one.

Key words: integro-differential equation, hereditary, fluctuation, multiperiodic solution.

1. Problem statement.
In this paper, we’ve researched the problem of the existence of (9, a)) -periodic solutions U (Z‘ , ) by

(Z‘,l‘)Z(T,Z‘l,...,tm)ERXRX---XR=R><Rm systems of
Dcu(r,t) (z' t)u(rt IKTtst cz‘+cs)u(st—cr+cs)ds+f(r t) (1.1)

with a differentiation operator D of the form

D, =0/07 +(c,0/01), (1.2)
that turns into the operator of the total derivative d / dt along the characteristics f =C7 — ¢S + O with
initial data (S, o ) e RxR", where R= (— OO,+OO), c= (Cl,.. . ,cm) is constant vector with non-
zero coordinates C;, j= L_m , 8/8t = (8/51‘1 yeo ,5/8l‘m) is vector, <C,5/5t> is the scalar product
of vectors, A(Z‘ ,t ) and K (Z‘ ,1,8,0 ) are given 1 X 1 -matrices, f (T, t) is 1 -vector-function,

(0, a)) = (9 NONNSRNON ) is vector-period with rationally incommensurable coordinates, & is positive

constant.
The problem of this kind involves the research problems of hereditary vibrations in mechanics and
electromagnetism. For example, if the oscillation phenomenon is hereditary in nature, then the equation of
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motion of the string at a known moment m(z‘) is set by changing the angle of string torsion a)(r),
subordinated to the ratio

d’wlr :
m(r)— ,ud—g) =ha(r)+ I(p(r,s)a)(s)ds, (1.3)
T -
where £ and h are constants and & is the hereditary period of the vibrational phenomenon.
It is also known that the hereditary biological phenomenon “predator-prey” - (N » NN, ) is related by
the law of oscillations described by the system of equations

aN\(r) _ N(r){g ~ 7N IE 7—5)N. (S)dS}a

dr

‘ggglﬂm(ﬁ—g+72 sz'S)()ﬁ}

T—&

(1.4)

Where ¢,,&, and y,,y, are constants, F, and F, are functions vanishing zeroat 7 —s2>¢, &

is the period of hereditary nature of the biological phenomenon under consideration.
Obviously, the above integro-differential equations (1.3) and (1.4) are particular cases of the
mathematical model hereditary phenomena described by the system of equations

.%}p jQrs s)ds + v (z) (15)

relatively sought 7 -vector-function with given 7 X 7 -matrices P (Z‘ ) and Q(T, S) and with 7 -vector-
function Y/ (Z‘ ), where & > 0 is a constant. Since the process is oscillatory, as a rule, the matrix P (Z' )
and the vector function {/ (Z‘ ) are almost periodic in general case and the kernel Q(T, S) has the property
of diagonal periodicity by (Z‘ S ) eERxR.

In particular, the indicated input data of system (1.5) are quasiperiodic by 7 € R with a frequency

. -1 -1 -1 : . . .
basis V, = 0 WV, =@, ,...,V, =@, then in the theory of fluctuations, the question of the existence

of quasiperiodic solutions x(r ) of system (1.5) with a modified frequency basis is important
v, =07V, =cw,...,V, =c,®, adweset s<O=0, <0, <...<, .
An important role in solving this problem is played by the well-known theorem of G. Bohr on the

deep connection between quasiperiodic functions and periodic functions of many variables (multiperiodic
functions). According to this theorem, matrix-vector functions are defined

A= A(Z',t),K =K(T t,s O') o=t—-ct+cs, [ =f(2',t), u =u(2',t) with properties of
A, =P(Z'), . —Q(T S) Sl =;//(T), uj,_ =x(2') and the operator d/dt is

replaced by a differentiation operator D of the form (1.2).

Thus, the problem of quasiperiodic fluctuations in systems (1.5) becomes equivalent to the problem
on the existence of (9 , a)) -periodic by (Z' , ) solutions M(Z' , ) of the system partial integro-differential

equations of the form (1.1) with differentiation operator (1.2).

The above examples of problems on string vibrations and fluctuations in the numbers of two species
living together associated with the task indicate the relevance of the latter, in terms of its applicability in
life. Along with this, it is worth paying special attention to the fact that the methods of researching
multiperiodic solutions of integro-differential equations and systems of such partial differential equations
belong to a poorly studied section of mathematics. Therefore, the development of methods of the theory
of multiperiodic solutions of partial differential integro-differential equations is of special scientific
Interest.
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In the present work are investigated to obtain conditions for the existence of multiperiodic solutions
of linear systems integro-differential equations with a given differentiation operator . To achieve this

goal, the initial problems for the considered systems of equations are solved from the beginning, and then
the necessary and sufficient conditions for the existence of multiperiodic solutions of linear systems
equations are established. The integral structures of solutions linear inhomogeneous systems with the
property of uniqueness are determined.

The theoretical basis of this research is based on the work of several authors. As noted above, taking
into account the hereditary nature of various processes of physics, mechanics, and biology leads to the
consideration of integro-differential equations [1-16], especially to the research of problems for them
related to the theory of periodic fluctuations [8, 9, 12, 13]. If the heredity of the phenomenon is limited to
a finite period & of time 7, then the hereditary effect is specified by the integral operator with variable
limits from 7 — & to 7.

Integro-differential equations describing phenomena with such hereditary effects are considered in [5,
6, 12, 14]. The various processes of hereditary continuum mechanics are described by partial integro-
differential equations, the study of which began with the works [1, 2, 4].

The work of many authors is devoted to finding effective signs of solvability and the construction of
constructive methods for researching problems for systems of differential equations, we note only [17,
18].

The research of multi-frequency oscillations led to the concept of multidimensional time. In this
connection, of the theory solutions of partial differential equations that are periodic in multidimensional
time is being developed, both in time and in space independent variables [19-35]. It is known that the
system of canonical Hamilton equations, under fairly general conditions, can be solved by the Jacobi
method, the essence of which is the transition from its integration to the integration of a partial differential
equation. A similar approach is implemented in [19], where quasiperiodic solutions of ordinary
differential equations are studied with a transition to the research of multiperiodic solutions of partial
differential equations. This method was developed in [20-30] with its extension to the solution of a
number of oscillation problems in systems of integro-differential equations.

In this research, it is examined for the first time that the problem of the existence multiperiodic

solutions of systems integro-differential equations with a special differentiation operator D _, describing

hereditary processes with a finite period & of hereditary time 7.

In solving this problem, we encountered the problems associated with the multidimensionality of
time; not developed general theory of such systems; determination of structures and integral
representations of solutions of linear systems equations; extending the results of the linear case to the
nonlinear case; the smoothness of the solutions integral equations equivalent to the problems under
consideration, etc. These barriers to solving problems have been overcome due to the spread and
development of the methods of works [31-35] used to solve similar problems for systems of differential
equations.

2. Zeros of the differentiation operator and their multiperiodicity.

By the zero of the operator D we mean a smooth function # = u(r , 1 ) satisfying the equation of
Du=0. 2.1
The linear function
t=h(z,7°,6")=t" +cr —ct’ 2.2)
is a general solution of the characteristic equation dt/ dt = ¢ with the initial data (2'0 1 0 ), and its

integral obtained from equation (2.2) by relative solution # ‘ type of the form
h(TO,T,l‘):l‘—CT—i-CTO (2.3)

T=T0

is the zero of the operator [ satisfying condition h(’[ 0 ,T,t X =t.
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It is also easy to verify that if Y (l‘ ) is an any smoothness function € = (1, e ,1), by
lZ(Zl,...,l‘m)ERX...XR=Rm,thenthefuncti0n

u(TO,r,t):y/(h(z'o,z',t)) (2.4)

_o=y(r).

Since the function w(t ) is arbitrary in the class C t(e) (Rm ) of functions smoothness € by £ € R",

is the zero of the operator D _ satisfying condition of u

relation (2.4) is a general formula of the zeros of the operator D _.
In connection with the research of question on multiperiodicity of the zeros operator D _, attention

should be paid to the following properties of the characteristics h(s , Tt ) of operator D _:

h(s +6,7+80, t) = h(s, Z’,t), (2.5)
h(s, T+ (9,1‘): h(s, z',t)— co, (2.6)
h(s,r,t+qa)):h(s,r,t)+ qo, (2.7)

which follow from the linearity of the function (2.3), where qa)z(qla)l,...,qma)m),

q =(q1,...,qm)EZ><...><Z =7", Z are set of integers.
If u(z‘ , ) is the zero of operator D, (9, a))—periodic by (2’ , ), then the initial function

e T uo(l‘) is @ -periodic by 7 :

u’(t +qo)=u"(t)e C(R"),qe Z". (2.8)

u

Therefore, condition (2.8) is a necessary condition for the (9 , a)) -periodicity of zero
u(z,t) e Ciff)(R X R" )
Suppose that for zero u(T 1 ) of the operator ), the necessary condition is satisfied (2.8) for its
(9, a)) -periodicity by (T 1 ) Then u(z‘, t ) according to formula (2.4) has the form of
u(z,t)=u’(h(z*,z,1)). 2.9)
Obviously, by virtue of conditions (2.7) and (2.8), the researching zero (2.9) is @ -periodic by f . For
a zero M(T ,1 ) to be @-periodic by 7, we require that condition
uo(h(ro,r+H,t)):uo(h(ro,r,t)—cﬁ) (2.10)

which holds by virtue of property (2.6).
From this it is clear that, under condition (2.8), relation (2.10) holds if only some integer vector

q ®€Z" is found and equality

cO+q°w=0, (2.11)
which means the commensurability of the ¢ = (c1 0,...,c,0 ) and @ = (a)l yeees @, ) vectors.
It should be noted here that condition (2.11) is required if the initial function u’ (t ) necessarily

depends on the variable ¢ . Otherwise, when U  =const , condition (2.10) is performed automatically,
conditions (2.11) are not needed.
Thus, if conditions (2.11) are not satisfied, then the (9, a))—periodic zero of the operator D are

constant.
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Obviously, due to the condition of (2.5), the zeros l/l(T O,T ol ) of operator ), form (2.4) have the

property of diagonal @ -periodicity by (Z' ’, z’): I/l(TO +0,7+ (9,1) = u(TO , T, t).
The proof of this property follows from (2.5) and (2.4) based on direct verification.
The obtained results are summarized in the form of the following theorem.

Theorem 2.1. 1) If condition (2.11) is not satisfied, then only constants are the (49, a)) -periodic zeros
of the operator D, and it does not have multiperiodic variables zeros. 2) If condition (2.11) is satisfied,
then any zero of the operator D, with an initial function of the form (2.8) is (9 R a))—periodic, in
particular, it can be any constant. 3) Any zero of the form (2.4) has the property of diagonal O-periodicity
by (Z' ‘T ) and from its @-periodicity zeros by T follows its @ -periodicity by T .

Further, in conclusion, we note one more important group property of characteristic

h(z®, &, h(&,7,0))=h(z",z,1), (2.12)

necessary in the future, in justice, which can be verified by direct verification.
3. Linear homogeneous equations and their multiperiodic solutions.
We consider the initial problem for a linear homogeneous system

D u(z,t)= A(z,t)u(z, 1) IK z,t,8,h(s,7,t)u(s, h(s, z,t))ds 3.1
with respect to the desired 7 -vector-function u(T,t) with condition
ulz,t) —u(t)eC(R") (3.1
under assumptions of
Ar+0,t+qw)=Alr,1) e C"Y (RxR"), gez", (3.2)
K(T +0,t+qw,s, 0) = K(T,t,s + 6,0+ qa)) = K(T,t,s,a) €
eC**)(Rx R" x RxR"), qgeZ" (33)

where 7° € R

It is obvious [19, 20, 21, 28, 29] that under condition of (3.2), using the method of successive
approximations, we can construct a matricant W(TO ,T,t ) of the linear system of partial differential
equations of the form

D w(z,t)= Az, t)w(z,t), (3.4)
which has property

DCW(TO , 7T, t) = A(T,t)W(TO , 7T, t), W(Z'O , 7" ,t)z E, (3.5)
DW 'z, z,t)=—W " (c°,7,0)Az,1). (3.6)
W(rO +0,T+l9,t+qa))=W(T°,r,t), geZ", (3.7)

where E is the identity 7 -matrix.

Then, using the replacement of
u(t,t)=w(c", 7, (r,1) (3.8)

system (3.1) is reduced to the form of integro-differential equation
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T

Dy(r,t)= [0 7,t,5,h(s, 7,0 ) (s, (s, 7,t))ds (3.9)

T—&

with the kernel
Q(ro, 7,15, 0') =W (ro, T,t)K(Z', t,s, U)W(TO,S, a), (3.10)

which, due to the properties (2.5)-(2.7) of the characteristics h(s, T, t), (3.3) of the kernel K(Z', t,s, G)
and (3.5)-(3.7) matricant W(z' 0 ,T,t ), has the properties of multiperiodicity and smoothness of the form

Q(TO +0,7+60,t+qw,s +(9,h(s +60,7+0,t +qa))):

0 0
= Q(T ,T,t,s,h(s,r,t)) = Q(r ,r,t,s,a) €
eCl ') (Rx Rx R" x Rx R" g e Z". (3.11)
Further, under condition (3.3), integrating along the characteristics: 7 =17, [ = h(?],T N ), using

property (2.12) of the form h(af, n, h(ﬂ, T, t))= h(g‘z, Z',t), from equation (3.9), using the method of

successive approximations, we find its matrix solution V(S, T,t ) based on the integral equation

Vis.e.t)=E + [dy [ O(s. .y, 0.0, EHE 0.0 (5. £, h(E .0 )dE . 312

s n-¢&

and by virtue of properties (3.11) of the kernel Q of this equation, we easily have the following relation

V(S +60,7+0,t+ qa)): V(S,r,t)e Cf};{;e)(R xRxR" ), geZ". (3.13)
Obviously, by virtue of (3.12) and (3.13), we have

DV (s,t.0)= [ Qs t.t, & h(E, 2.0 (&, h(E, T, e, (.14)

V(s,s,6)=E . (3.14")

We note that the matrix A , the kernel K , and the period & are such that the matrix V(S, T,t ) is
invertible, moreover

DV '(s,z,t)=-V"(s,7,t)- D.V(s,7,t)- V"' (s,7,2). (3.14)

Then the matrix
U(s,r,t): W(S,z',t)V(s,r,t), (3.15)
constructed on the basis of the replacement (3.8) is invertible, satisfies the equation (3.1), becomes the

identity matrix £ at 7 =, and has the property of diagonal @-periodicity by (S, T ) and @ -periodicity
by [ :

D.U(s,7,t)= Az, t)U(s,7,t)+ ]K(r,t,g,h(g,r,t))u(g,h(g,r,t))dg,
Uls,s,t)=E, (3.16)
U(s +0,7 + 9,t+qa)):U(s,r,t)e C(l""’)(RxRxR’”), qgeZ". (3.17)

S,T,t
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These properties of (3.16) and (3.17) matrix U (S , Tt ) are consequences of the properties (3.5)-(3.7)
and (3.13), (3.14), (3. 140) the matrices W(S, T, t) and V(S, T, t).
The matrix U (S, T,t ) can be called the resolving operator of the integro-differential system (3.1).
Theorem 3.1. Let conditions (3.2) and (3.3) are satisfied. Then the solution u(TO , T, l‘) of the initial
problem (3.1)-(3. 1° ) is uniquely determined by the relation
M(TO,T,Z)=U(TO,T,f)uo(h(TO,T,l‘)). (3.18)
Proof. By condition (3. 10), in accordance with formulas (2.8) and (2.9), the vector function

u’ (h(TO , T, l‘)) is the zero of the operator DC : Dcuo (h(TO , T, t))E 0.
Given this, by virtue of relations (2.12), (3.16) and expression (3.18), we have

Du’(h(e°,7,8))= Az, t)U(z° 2,0 u (h(z° 7, 2)) +

b TR £ HEr W EME .Mz - (e )=

T—&

= Ale (e o)+ [K(ot, & h(E e W (ERE 7.0 (W, h(E 7.0 =

T—¢&

= A(z',t)u(z'o,z',t)+ jK(r,t,f,h(f,r,t))u(z‘o,§,h(§,r,t))d§.

Thus, we were convinced that the vector function (3.18) satisfies the system (3.1). By virtue of (2.3)
and (3.16),at T =7 * we have condition (3. 10). The uniqueness of the solution (3.18) follows from the
uniqueness of the definition of matrices W(Z' N ) and V(T ‘Tt )

The theorem is completely proved.
Now, after establishing the structure of the general solution (3.18) of system (3.1), we have the
opportunity to research the multiperiodicity of its solutions.

Theorem 3.2. Let the conditions of theorem 3.1 are satisfied. In order to the solution M(Z' , ) of
system (3.1) is (9, a))—periodic, it is necessary, that its initial function u(O, t) =y’ (l‘) at T =0 should
be @ -periodic continuously differentiable function of the variable t € R" :

u'(t +qo)=u"(t)e C**(R"), geZ". (3.19)
Proof. Indeed, for T =0 , from the formula for the general solution (3.18) of system (3.1) we have
u(z,t)=U(0,7,¢)u’(h(0,7,t)), (3.20)
and it is (9, a)) -periodic by (T, t ) Therefore, the condition is satisfied
ur+0,t+qo)=ulr,t), g Z". (3.21)
Then, in particular, from the set (3.21) we obtain relation of
ulr,t+qo)=ulr,t), ge 2", (3.22)

Substituting the representation (3.20) into the identity (3.22) we have
U(0,7,t +qou’ (h(0,7,t + qw)) =U(0, 7, u’ (h(0, 7,t)).
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Then, by virtue of properties (2.7) and (3.17), we obtain
U(0,z,t)u’ (h(0,7,t)+ go)=U(0, 7, u’ (h(0,7,¢)), g Z".

Further, setting the # = 0 and taking into account (3.16), we have
u'(t+qo)=u’(t), geZ".

Thus, the identity (3.19) is proved. The smoothness of the initial functions u 0 (l‘ ) follows from the

smoothness of the solution u(z‘ , ) of system (3.1) itself. This is what was required to prove.

Theorem 3.3. In order for the solution M(Z',l‘) of system (3.1) for being @ -periodic by t € R"
under the conditions of theorem 3.2, it is necessary and sufficient for condition (3.19) be satisfied with
respect to the initial function u 0 (t ) for t=0.

Proof. « Necessity follows from theorem 3.2. To prove sufficiency, we show that relation (3.22)
follows from condition (3.19). To do this, it suffices to use representation (3.20) and properties (2.7) and
(3.17) of the characteristic and matricant, respectively. »

Theorem 3.4. In order for the solution u(r, t) to be O-periodic by T € R under the conditions of

theorem 3.3, it is necessary and sufficient that the initial function u’ (t ) at T=0 be a w-periodic
solution of the linear @ -periodic by t functional difference system

U(0,0,t)u’(t—cO)=u’(t) (3.23)
with difference p=c6 by t .
< The condition of @ -periodicity by 7 of the solution u(r , ) has the form

ul(r +6,t)=u(z,t), (r,t)e RxR" . (3.24)

By virtue of the uniqueness properties, the solutions of system (3.1) to satisfy condition (3.24) are
necessary and sufficient for condition

u(6,t)=u(0,?) (3.25)
to hold.
Then, using representation (3.20), we rewrite identity (3.25) in the form

U(0,0,t)u"(n(0,6,t))=U(0,0,)u"(7(0,0,1)).

Hence, by virtue of properties (2.6) and (3.16), we have the necessary and sufficient condition
(3.23).»

If u, (T 1 ): uo(h(O, T,t )) is the ((9, a))—periodic zero of the operator DC , then the solution
u(r, t) of the form (3.20):
u(z,t)=U(0,7,t)u,(z,t) (3.26)
we call the solution @ -periodic by ¢ generated by the (ﬁ,a))—periodic zero U O(T,l‘ ) of the
differentiation operator D .
Theorem 3.5. In order for the solution M(Z',t) to be (9,@)—peri0dic solution of system (3.1)
generated by the (0, a))—periodic zero U, (T, t ) of the operator D, under the conditions of theorem

3.4, it is necessary and sufficient that the vector function uo(‘r,t )= v(t ) be an eigenvector of the
monodromy matrix U(O, g, t) =V (t):
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[V)- Ep@)=0. (3.27)

<« According to theorem 2.1, we have u 0 (t - 09) =u’ (t ) Therefore, the necessary and sufficient
condition (3.23) given by theorem 3.4 has the form

[U(0,6,)— EJu’(£)=0. (3.28)

Obviously, u’ (l‘ ) =U, (0, t ) = V(t ) Then from relation (3.28) we have the condition of (9 , a)) -

periodicity of solutions u(z‘ , ) from the class under consideration generated by the multiperiodic zeros of

operator D .»
Note that if the commensurability condition (2.11) is not satisfied, then v(t ) becomes constant:

v=c" — const and the condition (3.27) of multiperiodicity has the form
[V(t)-E]" =0, teR". (3.29)

In order to avoid nonzero (9, a)) -periodic solutions of system (3.1), in this case, it is sufficient to

require that condition
det]V'(r) - E]#0, teR". (3.30)
be satisfied.

The research of multiperiodic solutions of the form (3.26) of system (3.1) is a separate interesting
direction in the theory of multiperiodic solutions of such systems, which is based on conditions (3.27) -
(3.30).

In many cases, there is necessary to clarify the conditions for the absence of multiperiodic solutions of
systems of the form (3.1) other than the trivial # = 0.

To do this, according to theorem 3.4, it is necessary to require that the @ -periodic functional-
difference system (3.23) does not have a solution nonzero that is @ -periodic by £ . In this regard, we

assume that the resolving operator U (Z'O ,T,t ) of the system of integro-differential equations (3.1)
satisfies condition
‘U(s, T, t){ <a e'“(H), T2>5 (3.31)
with the constants @ > 1 and o > 0.
Then the matrix U (O, T,t ) at 7 =0 turns into the identity matrix £ and at 7 > 0, according to
condition (3.31), decreases exponentially. Therefore, the monodromy matrix U (O, o,t )= V(t ) at all
t € R" satisfies condition

‘V(t)‘ <b=const<l, teR", (3.32)

where b=ae * =const<1.
Therefore, representing system (3.23) in the form

u’ () =V(tw'(t—co) (3.33)
and integrating it J times, we have
u'(t)=v(eW(t—ch)..V(t— jeOu'(t —cO— jch).
Estimating the last relation, on the basis of (3.32) we have inequality

‘uo(t)iﬁbj” uo(t—cé’—jcé’)L 0<b<l.
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Hence, passing to the limit at j —> +00, taking into account that the quantity ‘uo (t )( is bounded

due to its @ -periodicity, we have ‘M ‘ (l‘ )‘ =, that is, system (3.33) has only a zero @ -periodic solution.

Thus, the following theorem is proved.

Theorem 3.6. In order for the system of integro-differential equations (3.1) has no multiperiodic
solutions, except for the zero one under the conditions of theorem 3.4, the fulfillment of condition (3.31) is
sufficient.

Note that the proved theorem 3.6 remains valid if condition (3.31) is replaced by condition

‘U(s, T, t)‘ <ae’™, r<s (3.34)

with constants @ >1 and o > 0.
The more general than (3.31) and (3.34) the absence of condition a multiperiodic solution other than

zero is the decomposability condition for a resolving operator {J (S ,T,t ) into the sum of two matrix
solutions U (S, T, l‘) and U, (s, T, l‘) of system (3.1) in the form

Uls,7,t)=U (s,7,t)+ U, (s,7,1), (3.35)

DU, (5,0,0)= Az, 00 (s, 2,0+ [ K(e,t,,h(E, 0, U (5, &, h(E, T, )MdE, (336
satisfying conditions o

‘U_ (S, z',t){ <a e’“(H), T2, (3.37)
U (s,7,t) < ae“(H), 7<s§ (3.38)
U.(s.7.1)

with some constants @ > 1 and & > 0.

In particular, when one of the matrices U _ and U _ is equal to zero, then we obtain either condition
(3.31) or condition (3.34), respectively.

If conditions (3.35) - (3.38) are satisfied, they say that the resolving operator U/ (S, T,t ) has the

property of exponential dichotomy.
We note that for system (3.1), the case of exponential dichotomy is possible when for the monodromy

matrix U there exist projectors P_and P_ with the properties P+ P, = [ is the identity operator,
PP =P P =0 is the zero operator and P. (Uu)= P.U -P.u, where P_ projects the space of

solutions onto the subspace of exponentially decreasing in norm of solutions, and P, - on the subspace of

exponentially increasing solutions.

Then system

V(eW(t —c6)=(t) (3.39)

is equivalent to system

Ve (t—cO)=v (¢), (3.40 )
V() v, (t—cO)=v (). (3.40,)

As above, it was justified that systems (3.40 _) and (3.40 ) have only zero multiperiodic solutions;

therefore, system (3.39) also has only a zero solution, provided that conditions (3.35) - (3.38) are satisfied.
Thus, we can state a theorem that generalizes theorem 3.6 proved above.
Theorem 3.7. Let conditions (3.2), (3.3), and (3.35) - (3.38) be satisfied. Then system (3.1) has no
multiperiodic solutions, except for the trivial one.
4. Linear inhomogeneous equations and their multiperiodic solutions.
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We consider the linear inhomogeneous system of integro-differential equations
D.u(z,t)= A(z,t)u(z.1) I K(e,t,6.h(&, 7.0 lu(&, h(§. 0. 0))dE + f(z.0). @

the corresponding system (3.1), where the f (Z‘ N ) is given 7 -vector-function possessing property
f(r+6’,t+qa)):f(r,t)eCr(f)t’e)(RxR’”),qu'”. (4.2)

Under the condition (4.2), we are posing the definition of a solution U = u(r , ) of system (4.1)
satisfying the initial condition

u ., =u'(t)e COR™). (4.1%)

We begin the solution of this question about finding the particular solution 1" (z'o ,T,t ) of system
(4.1) with zero initial condition

u*(fo,f,t]mo =0. (4.1

We will seek this solution in the form

u*(ro,r,t)z U(s,z,t (s, h(s,z,¢))ds (4.3)

e

with an unknown, continuous, smooth by 7 at (Z', t ) € R x R" n-vector-function
Wz, t)eCI(RxR"), (4.4)
where U (S, T,t ) is resolving operator of the homogeneous system (3.1).

Acting by the operator D on the vector function (4.3), taking into account (4.4), we have
D' (", 2,t)= [ DU(s,7,1)- s, hls, 7, ))ds +v(z,1) =

= Az, t)j U(s,z,t (s, h(s, z,t))ds +

TO

] (IK (.. & hE T (5. £, (e, f,t))dgjv(s, s, 2.0 )ds + v(z, )=
= A(r, t)u*(ro T, t)
+ j K(z,t,&,h(E, rt){fU LE(E T, )(s, s, &, h(E, T, t)))ds}dgw(f )=

= Azt (‘[0 , z',t)+ IK(r,t, E (&, T )’ (ro, g, h(§,z‘,t))d§ +v(r,t). (45

Substituting expressions (4.3) and (4.5) into system (4.1) we obtain that

v(z,t)= f(z,1). (4.6)

Then, by virtue of (4.6), we find the desired solution
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u*(fo,r,t)z j.U(s, z,t)f (s, h(s, 7,1))ds. 4.7)

Obviously, the solution (4.7) satisfies condition (4. 1*).
Since the solution # (Z' ' T, t) of the linear inhomogeneous equation consists of the sum of the

solutions of the homogeneous equation and some particular solution of the inhomogeneous equation, we
have the expression for the general Cauchy solution

u(ro,r,z‘):U(TO,T,t)uo(h(ro,r,t))Jr u*(ro,r,t) (4.8)

system (4.1) with initial condition (4. 1° ).
Thus, we have the theorem on solving the initial problem for a linear inhomogeneous system of
integro-differential equations (4.1).

Theorem 4.1. Under conditions (3.2), (3.3) and (4.2), the initial problem (4.1) - (4.10) has the
unique solution in the form (4.7) - (4.8).
<« The existence of a solution u(z’ ,T,1) under the conditions of the theorem is proved by the

deductions of formulas (4.7) and (4.8). The uniqueness of the solution (4.8) follows from the uniqueness
of solution of the initial problem for the homogeneous system (3.1).»

Now we will research the problems of multiperiodic solutions of system (4.1). Suppose that the
conditions of theorem 3.7 are satisfied.

Then the homogeneous system (3.1) corresponding to system (4.1) does not have (9, a))-periodic

non-zero solutions, and it has the property of exponential dichotomy.
In this case, the question of the existence of multiperiodic solutions of system (4.1) is investigated on
the basis of the Green's function method.

To construct the Green's function G(S, T,t ), using the property of exponential dichotomy, we set

G(S,T,t):{

where U (S, T,t ) and U, (S, 7,1 ) are the terms of the resolving operator U (S ,T,t ), which consists

of their sum (3.35).
The constructed Green function (4.9) possess the following properties.

1° _DL_G(S,T,Z‘) = A(z‘,t)G(s,z‘,t)—i—
+ _T[K(T’t’gﬂh(gaTat))G(Sag,h(é:,T,t))dg,T Z=S.

(4.10)

U_(s,r,t), 72>,

~U (s,7,t), 7<s, 9

This property follows from property (3.36) of the operator U/ (S ,T,t )

2°. G(S—O,T,t)—G(s+O,T,t)=E. (4.11)
Lets note that follows from the equality U (2’ -0,7,t )+ U (T +0,7,¢ ):
= U_(r,z',t)+ U+(z',z',t): U(z',z',t): E.

3. G(s+t9,r+6’,t+qa)):G(S,r,t), qgeZ". (4.12)
This property is the consequence of property (3.17) of the resolving operator U/ (S ,T,t )
4°|G(s,z,t)<ae™ ™ a=land a>0. (4.13)

We have this estimate from inequalities (3.37) - (3.38).
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Theorem 4.2. Suppose that the conditions of theorem 4.1 are satisfied and the matrix A(Z' , ) with
kernel K (Z‘ ,1,8,0 ) are such that the linear homogeneous system (3.1) has the property of exponential

dichotomy, expressed by the relation (3.35) - (3.38). Then system (4.1) has the unique ((9, a))—periodic
solution

u*(r,t): TG(S,T,t)f(S,h(S,T,t))dS, (4.14)

satisfying estimate

u , (4.15)

<lr
(04
where HuH = sup‘u(r, t)‘ .
RxR"

<« The convergence of the integral (4.14) and the differentiability of the solution (4.14) follow from
the differentiability of the matrix-vector functions G, f and estimate (4.13). By virtue of (4.10) and

(4.11), it is proved that the vector-function (4.14) satisfies system (4.1). Multiperiodicity follows from
properties (4.12) and (4.2). Inequality (4.15) is the consequence of the estimate (4.13). The exponential

dichotomy of system (3.1) ensures the uniqueness of the (9 R a)) -periodic solution of system (4.1). »
Lemma 4.1. Let the homogeneous linear system (3.1) under conditions (3.2), (3.3) and (4.2) have no
(9, a))—periodic solutions except zero. Then the corresponding inhomogeneous linear system (4.1) can

have at most one (9 R a)) -periodic solution.
<« Suppose that under the conditions of this lemma, system (4.1) has two different (9, a))-periodic
solutions 1, (T,t) and u, (T, t)# u, (T,t). Then their difference u(T,t)z u, (T, t)— u, (T,t)¢ 0 is

a (9, a))-periodic solution of the linear homogeneous system (3.1), which has only a zero (49, a))-
periodic solution. The obtained contradiction proves the validity of the lemma. »

Assuming that the @ -periodic initial function u’ (t ) eC t(e) (Rm) of the (49, a)) -periodic solution

u(r,t):
u(z,t)=U(0,7,t)u’ (h(0,7,))+u"(0,7,1), (4.16)
represented by (4.8) has property

u(t—cO)=u'(t), (4.17)
it can also be represented by formula
u(t,t)=u(z +6,t)=U(0,7+ 6, u’ (h(0,7,))+u" (0,7 + ,1), (4.18)
since, by condition (4.17) u°(h(0,7,¢)) is (8, @)-periodic zero operator D._.
Then, eliminating the unknown initial function 1 (¢) from relations (4.16) and (4.18), we obtain
u(r,))=[U" (0,7 +0,t)-U"(0,7,1)]x
x U (0,7 + 0,00 (0,2 +6,0)-U" (0,7, " (0,7,1)}. (4.19)

Further, using representation (4.7) of the solution u° (O,Z',t ), accepting the notation

U(S,T,I)Z U (O,T,t)U(S, T,t) and setting
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Ji U(S,’Z',t)’ T—S-—)O’
U,(s,z,t)=1 _ (4.20)
Uls,z+0,t) 0——>7+0,
h * 50
fe(S,T,h(S,z-,t)): f(S,T, (S,T,t)) T—> ,
f(s,7+0,h(s,7+6,1)) 0——>7+86,

we can represent relation (4.19) in the form

T+0
u(z,))=[U" (0,7 +6,)-U"(0,7,1)]" [U,(s,7,0)f,(s,h(s,7,0))ds . (422)

4.21)

Thus, looking for a (9, a))—periodic solution of system (4.1) among solutions M(Z' ,1 ) with initial

conditions having property (4.17), we showed that it is determined by formula (4.22), which is revealed by
relations (4.7) and (4.19) - (4.21).
Theorem 4.3. Suppose that conditions (3.2), (3.3), (4.2) are satisfied and the linear homogeneous

system (3.1) has no ((9,(0)—peri0dic solutions, except for the trivial one. Then the system of
inhomogeneous linear integro-differential equations (4.1) has the unique ((9,(0)—periodic solution
M(Z', l‘) of the form (4.22).

<« The conclusion of the solution (4.22) is given above. Therefore, the existence of the (9, a))-

periodic solution of system (4.1) is proved. Uniqueness follows from Lemma 4.1. »
Note that the above researched problems for the considered systems can be considered along the

characteristics  =¢" +¢7 —c 7" with fixed initial data (Z' ot O).
Then, due to the fact that the operator [ turns into the operator d / dt of the full derivative, from

the theorems proved as a corollary we have the corresponding statements about the existence of solutions
to the initial problems for systems of ordinary integro-differential equations and the theorem about the
existence of their Bohr quasiperiodic solutions generated by multiperiodic solutions of the original
systems which we will not dwell on here.

Conclusion.

First of all, we’ve noted that this article proposes the method for (research) researching solutions of
problems that satisfy the initial conditions and have the property of multiperiodicity with given periods for
linear systems of integro-differential equations with [ partial differential operator, & -hereditary effect

and the linear integral operator. This technique is a generalization of methods and solutions of similar
problems for systems of partial differential equations with the operator D _. The solution of problems

under consideration for such systems in this formulation are researched for the first time. The relevance of
the main problem is substantiated. The solutions of all the subtasks analyzed to achieve the goal are
formulated as theorems with proofs. Scientific novelties include the multi-periodicity theorems of zeros of

the operator D _; about solutions to initial problems for all considered types of systems; about necessary

as well as sufficient conditions for the existence of multiperiodic solutions of both homogeneous and
inhomogeneous systems, as well as the integral representations of solutions inhomogeneous systems in
two cases when the corresponding homogeneous systems have the properties: 1) exponential dichotomy
and 2) the absence of non-trivial multiperiodic solutions, at all.

We’ve also noted that the consequences deduced by examining the results obtained along the

characteristics =1" +c7—c7’ with fixed (z'o N 0) refer to their applications in the theory of
quasiperiodic solutions of systems ordinary integro-differential equations.
The technique that developed here is quite applicable to the research of problems of hereditary-string

vibrations and the “predator-prey” given in the delivered part of the work, which can be attributed to
examples of the applied aspect.
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K.)XKy0aHoB atbiniarbl AKTe0e eHipiIik MeMJIeKeTTiK yHuBepcuteTi, Akrebe, Kazakcran

D _-ONEPATOPJIBbI JKOHE & -3PEJUTAPJIBIK IEPUOATHI ChI3bIKTHI HHTET PAJI/IBI-
JTADOEPEHIIAAJIBIK TEHJAEYJIEP )KYHECIHIH KOMMEPUOATHI IIEIITM/IEPI

Annorauusi. Makanama D =0/0z +c, 0/ot, +...+c, 9/ot, onepatopisl, ¢ =(c,,...,c, )—const *ome
TYKBIM KyalaylIbUIbIK CHIATTaFbl KYOBUIBICTAPIbl CHUMATTAUTBIH &£ aKbIPIbl APEAUTAPIIBIK IEPUOITHI ChI3BIKTHI
MHTErpasibl-InGPEepeHIHATIIBIK TEeHACYJIEp KYHECIHIH KOINepUoAThl LIeunMIepl JKOHIHIeri ecenTep MeH
Oacrarkpl ecern Macenenepi 3eprreneai. D, onepaTopbIHbIH HOJIJIEPIHIH TEHIEYIMEH KaTap ChI3BIKTHI OIPTEKTI JKoHE
Oiprekti emec wuHTerpanibl-quddepeHIMaNIBIK TeHAeYyJIep JKyHeci KapacThIpbUIIbI, OJap YIIiH OacTamnkbl
ecenTepaiy OIpMOHAI MCHMIUTIMIUTINIHIH JKETKUTIKTI IIapTTapbl aHbIKTaaraH, (7, f) OoWbiHIIA (6, ®) NMEPUOITHI,
KONMEePUOATHI MCIIiMACPIiH 0ap OOMYBIHBIH KaXKCTTi €, KeTKUTIKTI /e maptrapbl anbiHFad. ChI3BIKTBI OIPTEKTI
eMec KYHeHIH KeIIepUOATHl MIeUIIMIEPiHiH HHTErpaliblK epHekTepl 1) nepOec skarnaiiaa, iKW TEHIEYre colkec
OIpTeKTI Ky#Henep SKCIIOHCHIMAIIBI TUXOTOMISUTBIK KacHeTKe We OOJIFaHIa XoHE 2) JKalIlbl XKarjaiaa, OIpTeKTi
JKYHeNnepaiH HellieH 0acKa KOIepruo AT memimMaepi OoaMarania aifKpIHIaIbL.

Tyiiin ce3aep: uHTErpanAb-TUPPEePESHIHATIBIK TCHACY, IPEAUTAPIBIK, PIYKTyarns, KOTIIEPHOITHI IICITIM.

YIAK 517.946
MPHTU 27.33.19
K. A. Capradanos, I'.'M. AiiTeHoBa

AXTIOOMHCKHI perHoHajIbHBINA rocyqapcTBeHHblld yauBepceuter nMenn K.)KybanoBa, Akro6e, Kazaxcran

MHOTI'OITEPUOJMYECKHWE PEIEHWA JUHEMHBIX CHCTEM
HUHTETPO-TU®PEPEHIIAAJILHBIX YPABHEHUM C DC -OIIEPATOPOM
N & -IIEPUOAOM PEJUTAPHOCTH

AHHOTanusi. B 3ameTke wucciienyroTcsi BOIPOCHl HauyalbHOM 3ajauyd M 3aJa4d O MHOTONEPUOJUYHOCTU
pelieHuil  JIMHeWHBIX ~ cUCcTeM  MHTerpo-auddepeHnranbHbIX  ypaBHEHHH c OIepaTopoM  BHJA
D, =0/0t+¢,0/0t,+...+¢,0/dt, c=(c,....c,)—const I KOHCUHBIM NIEPUOJIOM IPEIUTAPHOCTH & = const > 0,

KOTOPBIC OIMUCHIBAIOT SIBIICHWS HACJIEIACTBEHHOIO XapakTepa. Hapsmy c ypaBHeHumeM Hyned omeparopa D,
pPacCMOTPEHBI JTHHEHHBIC CHCTEMBI OJHOPOIHBIX M HEOJHOPOMHBIX HHTETrpO-Iu((epeHINaTbHBIX YPaBHEHUH, s
HUX YCTAHOBIICHBI JOCTATOYHBIC YCIIOBHSI OJHO3HAYHOW pa3pelIMMOCTH HaYalbHBIX 3a/1a4, IIOJyYeHBl Kak
HEOOXOJUMBIC, TaK M JIOCTATOYHBIC YCIOBHUS CYIICCTBOBAHHS MHOTOIEPHOANYECKHUX 1O (7, ) ¢ mepuonamu (6, o)
pemrenuii. OrnpeeeHbl HHTErPabHBIC PEICTABICHISI MHOTOIIEPUOIUYCCKUX PEIICHUIN THHEHHBIX HEOHOPOIHBIX
cucteM 1) B 4YacTHOM cliydae, KOrJa COOTBETCTBYIOIIME OIHOPOIHBIC CHCTEMbI OOJIQJAIOT SKCIOHEHIMATbHON
JIMXOTOMHUYHOCTBIO U 2) B 00IIEM ClIydae, KOrja OAHOPOAHbIC CHCTEMbI HE HUMEIOT MHOTONEPUOIMYECKUX PELICHUM,
KpOME TPUBHAIBHOTO.

KiroueBbie cjoBa: uHTerpo-nuddepeHmantsHoe ypaBHEHHE, APEIUTAPHOCTD, ¢baykryanusi,
MHOT'OIIEPUOJUYECKOE PEIICHHE.
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ON THE APPLICATION OF QUADRATURE FORMULAS FOR
CALCULATING INTEGRALS OF ARBITRARY MULTIPLICITY

Abstract. In this paper, we consider the calculation of integrals of arbitrary multiplicity by the methods of non-
uniform grids, Monte Carlo and optimal coefficients. A comparative analysis of these numerical methods for
integrating multiple integrals was made. It was established that the method of optimal coefficients had an advantage
compared to other methods. It is shown that the use of uneven and parallelepipedal grids is the basis of almost all
results obtained in the field of application of theoretic — numerical methods to the problems of approximate analysis.
It is established that interpolation of functions of several variables by theoretic-numerical grids allows to receive
interpolation formulas, accuracy of which rises with increase of smoothness of functions. The number of variables in
this case has no significant effect on the order of the residual member. The use of the function f € E to Fourier

coefficients allows to obtain an interpolation formula from the quadrature formulas, which are constructed with the
help of the parallelepipedal grids. This formula is accurate for trigonometric polynomials, the degree of which does

not exceed the value of /N In 2 N .
Key words: theoretic-numerical method, quadrature formula, method of optimal coefficients, multiple integrals.

1. Introduction

There are three types of problems in which theoretic — numerical approaches lead to general results:
application of quadrature formulas for calculating integrals of arbitrary multiplicity, approximate solution
of integral equations and interpolation of functions of several variables.

The paper considers the connection between the theory of uniform distribution and the number-
theoretic method in approximate analysis. The main types of theoretic — numerical grids, non-uniform and
parallelepipedal, are analyzed. The problems of finding the optimal coefficients for parallelepipedal grids
are presented.

Theoretic — numerical algorithms of numerical integration are essential in the calculation of
interaction integrals in quantum chemistry and in the calculation of nanoscale ferromagnetic
heterosystems, and also in high-energy physics.

2. Materials and methods of research

2.1 Approximate calculation of multiple integrals

Integration of multiple integrals of functions of the class E .
The function of the form:

0

f('xla"':xs): ZC(ml,...,ms )627zi(m1xl+...m:xs) (1)

belongs to the class E7 if C(m1 yeees T ) = 0((m] yeres m_s)_a ), where m_v = max(l,

o > 1 characterizes the smoothness of functions.

mv|) and the value of
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L . . o o0”
The class EY has periodic functions that have continuous derivatives of the form V—fv,
Ox, '...0x, "
where v,,..., v, is an arbitrary permutation of fixed integers «,...,c, selected from the interval [0,0zs],
so that o, +...+ a, = as . In particular, for integer « , functions that have a derivative — will
' ox," ...0x,

belong to the class E.

It is not necessary for the function to be periodic. There are simple ways of transition from non-
periodic functions to periodic functions [1-3]. The replacement of variables that do not disrupt the
smoothness of the functions and does not lead to significant complication of calculations can also be used
for the periodization of the function.

Let R be the error of the simplest quadrature formula

[ ] G, e, , =%Zf[§l(k),...,§s(k)]—R, )

0 0

where the collection of points M, = [cfl (k),..., ¢ (k)] is called a grid.

In the case of uniform grids, arising from partition of the unit s -dimensional cube into N =n" equal
small cubes, the following estimate is valid for the functions of the class £ :

R=0 !

|, (3)

NS
achievable in this class; this estimate is not improved when using quadrature formulas with arbitrary
weights. The disadvantage of quadrature formulas with uniform grids is the decrease in their accuracy
with the increase of the number of measurements.
2.2 The first theoretic — numerical method for constructing quadrature formulas
This method is based on the use of non-uniform grids of the form [1]

e

where N is the prime number, {W} is the fractional proportion of the number %

In the case of non-uniform grids, the error estimate of the quadrature formula (2) takes the form

R=o =] ®

Non-uniform grids are obviously free from the main drawback of uniform grids — unlike estimate (3)
the order of estimate (5) remains unchanged with the increase of the number of measurements.

Along with the above-mentioned advantage of non-uniform grids, these grids have a significant
disadvantage — the accuracy of the results obtained using the corresponding quadrature formulas does not
increase with increasing smoothness of the considered functions.

2.3 The second theoretic — numerical method for constructing quadrature formulas

This method is based on the use of parallelepipedal grids of the form

B

where a,,..., a, are integer numbers selected in a special way (optimal coefficients). This method does not

have the disadvantage of non-uniform grids [5]. For parallelepipedal grids, the error estimate in formula
(2) takes the form
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R= O[IHM Nj. )

ND!
There are no grids that give better estimate R on the class E” than O(#) [6]. This estimate

cannot be improved for the case of quadrature formulas of the most general form as well [7]. Thus, grids
of the form (6) lead to quadrature formulas, in which the error estimate does not allow further significant
improvement.

When s =1, there exists a single parallelepipedal grid, which coincides with the uniform grid,

obtained by dividing the segment [0,1] into N equal parts, i.e.

M, = ({i}] ,where k=1,2,....N (8)
N

When s =2, it is not difficult to show that the integers a, =1, a, =a will be optimal coefficients
a
for any a = a(N ), in which incomplete partial relations ﬁ will be limited to a value increasing with the

growth of N not more than some degree of In N . In particular, when N =u, , where u, is a general

n?

term of the Fibonacci sequence (the Fibonacci sequence is defined as follows: u, =1, u, =1,

u,=u, +u,,, n=23,..), the integers a, =1, a, =u, , will be optimal coefficients and points

n—1

M, = [{i},{ku"“ }J ,where k =1,2,...,u, (&)
un uVl

form a two-dimensional parallelepipedal grid.
When s > 3, various sufficient optimality conditions can be used to calculate the optimal coefficients.

Let at v=12,...,s for integers z, from the segment [I,N—l] the functions H(zl,.. z ) are

94y,

determined by the equality [4]:

H(zy02,)= 2{1—21{2@117;{%}}}- : -{I—ZIH[Zsinﬁ{]ZS }ﬂ

The integers a,,...,a, will be optimal coefficients if @, =1 and for given a,,...,a,, (v=2) the

value a, is equal to any of the values z , at which the minimum of the function A (al,..., av_l,zv) is

reached.
Another sufficient condition for optimality according to [1] — the integers a,,...,a, are optimal

coefficients if the minimum multiplication m,,---,m_  for non-trivial solutions of the comparison

a,m, +...+a,m,=0(mod N) satisfies the condition E,---,m_s >BNIn"" N, where B>0 and y 20

are constants depending only on s .

From relations (4), (8) and (9) it can be seen that non-uniform grids with any s and parallelepipedal
grids with s <2 are indicated quite effectively with the help of simple formulas. When s > 3, different
algorithms have to be used to find parallelepipedal grids. Consideration of algorithms, in which the
number of operations necessary to specify the grid is not too large compared to the number of calculations
in the corresponding quadrature formulas, can be practically effective.

The first of the above methods for finding optimal coefficients is practically effective, since the

number of elementary operations in the calculations arising in it has order N 2 By slightly modifying this
algorithm, it is possible to reduce the number of operations to O(N e ), where &€ > 0 is arbitrarily small.
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Almost all the results obtained using parallelepipedal grids, it is possible to use practically effective
algorithms. However, in some cases [1], the indication of the corresponding grids is still possible only

with the help of O(N S) operations, where s > 2 is ineffective.

From the two grids leading to the following error estimates |R|<C1N “InA N and

|R| <C,N™* In”2 N, it is natural to consider the first one, which is better if a, > a, . However, the

advantage of the first grid can be revealed only at very large values of N . Therefore, in computational
practice, when choosing a quadrature formula, appropriate experiments are necessary.

3 Comparison of numerical methods for integrating multiple integrals

The multiple integral over the unit volume of some function f (x1 ,X,,X;,X, ) is replaced by the finite

jjj.jf(xl,xz,x3,x4)dx1dx2dx3dx4 :_if {&k}’{ﬂ},{ﬂ}’{%k} |

PYq k=1 pq) \pq9) (P9) (P9
where pg=4097, and a,,a,,a,,a, are optimal coefficients. The integrals of the following functions are

sum:

calculated:

XX, X3X, 5 X+ X, =X, +2x, 3 X7 X5 x,e ‘
0.0625 = 1.5 ’ ©0.051615162

4. 14 cos2z(x, + x, + x, + x,);

5. 1+sinaz(x, +x, —x, +2x,) for a=10;30,60;100;,200;

]2

4 1 2 —a[
6.~ i) for @ =1;10;30;60;1 00.
Vi

l.

'xl
1-x;

16a*

In integrals, non-periodic integrands were periodized and the integrals of them are equal to 1.

The following table shows the results of calculating the integrals in different ways. It shows that the
method of optimal coefficients has an advantage over the calculation by other methods. And also in most
cases, a significant advantage of parallelepipedal grids over other grids is revealed even with a very small
value of N [15].

Table - Results of calculating integrals by different methods

Functions Method of non- Monte Carlo methods Method of optimal
uniform grids coefficients
1 2 3 4
1 0.38 0.78 1.05 1.02 1.01 0.999995
2 0.74 0.94 0.99 1.008 1.008 0.999999
3 0.80 0.75 1.07 1.04 0.99 1.000186
4 1.01 1.009 1.002 0.99 1.01 1.000000
5 10 1.01 1.008 0.99 0.99 0.99 1.00000000
30 1.01 0.98 0.99 0.99 0.99 1.00000002
60 1.01 0.98 0.99 1.008 1.003 1.00000004
100 1.02 1.02 1.003 0.99 0.99 1.00000013
200 0.98 1.01 0.99 1.0001 1.02 1.00000021
6 1 1.03 1.23 1.03 0.93 0.99 0.999682
10 1.39 1.65 1.13 0.84 0.77 1.002806
30 3.22 248 0.87 0.91 0.95 0.940240
60 7.48 3.87 0.53 0.54 1.16 1.583021
100 16.2 5.99 0.22 0.19 1.28 3.977712
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All the obtained sets of optimal coefficients and the values of five, ten, fifteen-fold integrals
calculated by the method of optimal coefficients with parallelepipedal grids for non-periodic functions are
given in [8-14]. It was shown that the calculation of integrals with good accuracy was also possible for the
small number of nodes of the quadrature formula N . A comparative characteristic of the calculated sets
of optimal coefficients and values of multiple integrals by the theoretic - numerical methods, taking into
account the number of nodes of the quadrature formula, was also given.

The use of non-uniform and parallelepipedal grids forms the basis of almost all the results obtained in
the field of application of theoretic — numerical methods to the problems of approximate analysis.

For a multiple Fredholm integral equation of 2nd kind:

o(P)= A [K(P.Olp(Q)d0 + 1 (P). (10)

where integration is extended to a unit s — dimensional cube G, . We will assume that the free term and
the core of this equation belong to the classes E” and EJ respectively, and that the denominator of

Fredholm D(ﬁ) is non — zero. Using theoretic - numerical grids M , , one can obtain [5] an approximate
solution of equation (10) in the form

AU —~
o(P)= 3 K(P.M (M, )+ £(P)+ R,
k=1
where values of @ (M A) are determined from a system of linear algebraic equations:
N
pM,)= %ZK(M,C,M, Jo(M,)+ f(M, ), where k =1,2,...,N;
=1

moreover, the error R, depending on the choice of grids, has the same order as in the calculation of
multiple integrals of functions belonging to the class E .

For an arbitrarily small ¢ >0 and sufficiently small A, using the method of iterations and non-
uniform grids of the form (4) to calculate the increasing multiplicity integrals, we can obtain an explicit
approximate expression for (D(P):

AP = (P2 S5 (0, Do, ot 0, o .

k=1 v=1

N N

is some constant depending on & and the character of decreasing Fourier coefficients of the kernel of
equation (10).
Using parallelepipedal grids and slightly changing the definition of classes £ [6], it is possible in

s(v—1)+1 sV
Here M, = L{k },,{k—}] , n= [yln N] is the integer part of the quantity yIn/N and y

the analytical expression for gD(P) to improve the residual term to O( e ) The same methods can be

applied [15] to solving multiple Volterr equations and equations of the mixed type, in which some of the
integrations are constant and some of them are in variable limits. In [16], questions of the numerical
solution of nonlinear Volterr integral equations of the first kind with a differentiable kernel, which
degenerates at the initial point of the diagonal, are considered. It is shown that this equation reduces to the
Volterr integral equation of the third kind and a numerical method is developed on the basis of the
regularized equation. The convergence of the numerical solution to the exact solution of the Volterr
integral equation of the first kind is proved, the estimates of the error and the recursive formula of the
computational process are obtained.

In questions of interpolation of functions of many variables, the theoretic — numerical grids make it
possible to obtain interpolation formulas, the accuracy of which increases with increasing smoothness of
functions, and the number of variables does not significantly affect the order of smallness of the remainder
term. Applying quadrature formulas constructed using parallelepipedal grids to the Fourier coefficients of
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the function f e E, we obtain the interpolation formula

al a+l
X peeen X kal — x,, +0 21112“N,
fx Zf |

where functions , (x, ..., xs) are defined by equality

27z{m1 (xl 7kﬂj+‘..+ms[xs _ka, ):|
N N
l//k(xl,...,xs)z Ze .
mipoms<dNin 2N

This formula is exact for trigonometric polynomials, the degree of which does not exceed the value

\/ﬁlan.

More accurate results in the interpolation of functions of many variables can be obtained in another
way, based on the representation of a function by some finite sum of integrals and then applying the
corresponding quadrature formulas to these integrals.

4. Conclusion

The application of theoretic — numerical methods to the problems of approximate analysis is reduced
to the use of non-uniform and parallelepipedal grids. Theoretic — numerical grids make it possible to
obtain interpolation formulas, the accuracy of which increases with increasing smoothness of functions.
The number of variables does not significantly affect the order of smallness of the residual term.

I'PHTU 519.642; 519.644
C.K. 3amanoBa, A.Jl. Mypanos

on-®apabu areingarsl Kazak ¥nTTeiKk YHUBepcureti, Anmatsl, Kazakcran

EPKIH ECEJII UHTETPAJLIAP/JIbI ECEIITEY YIIIH
KBAJPATYPAJIBIK ®OPMYJIAJIAPABI KOJIJAHY TYPAJIBI

AnHorauus. byn makanana Gipkenki emec Topyap, Monrte-Kapio xoHe oHTainbl ko3dduIMeHTTep daicTe-piMeH
epKiH ecelli MHTerpaliiap/bl ecenTey KapacThlpbulabl. Ker emiemai WHTerpangap/ibl ecenTeyaiH KOpCETIIreH CaHABbIK
oMicTepiHEe CalBICTBIpManbl Tanjaay okacanasl. OHTailnbsl kosdduunuentrep omici 6acka oIiCTEpPMEH CajbICThIPFaHAA
apTHIKIIBUIBIKKA We eKeHAIri aHpikTanabl. [llamameH Tangay MoceneNnepiHe TeOpHUSUIBIK-CAHABIK OMICTepAl KOJJaHy
canacklHa OipKesKi eMec JkoHe napauleleNUuIuIeanabl TOpaapAsl NaiiianaHy HOTHXEIEepAiH KOIIiIiriHiH Heri3i 6onbin
TaOBLTATBIHEI KepceTinreH. Kem aiHbIManbuiel (QYHKOUSTAPABI TEOPHATBIK-CAHABIK TOPIAPMEH WHTEPIOIAIHANAY
(yHKUMATApABIH TETICTIMH apTTBIPYMEH ©CETiH MHTEepHOALMSUIBIK  (opMylamapabl adyFa MYMKIHIIK OepeTiHi
aHBIKTANIBI. byl sxarnaiia ailHBIMAJIbUIAPIBIH CaHbl KAJJBIK MYIICHIH a3bIFbl TOPTiOiHE eneyni ocep erneiai. Oypbe

kooduumnenrrepine f € E f’ GyHKIMSAHBI MaiifanaHy —HapajuleNenunenainsl  Topyap apKbUIBl  KYPBUIATHIH

KBaJIpaTypaiblK (opMynanapJaH UHTEPHOLUSAIBIK (OpMylaHbl alyFa MyMKiHIik Oepeni. MyHnail ¢dopMyna nopexkeci

5
VN 1n 2 N MoHHEH acHaiThIH TPUTOHOMETPHUSIIBIK ITOMHHOM/IAP YITIH 101 OOJBIT TaOBLIAIBI.
Tyiiin ce3aep: TEOPUSIBIK-CAaHIbIK dAiCi, KBaJpaTypalblK GopMyna, OHTalIbl K03 hULUEHTTEp 9ici, KOl eeMIi
HHTErpagap.

I'PHTU 519.642; 519.644
C.K. 3amanoBa, A.Jl. Mypanos

Kazaxckuii HaloHanbHbl yHUBEpcUTeT UMeHU anb-Dapadu, Anmarst, Kazaxcran

O IPUMEHEHHUU KBA/IPATYPHBIX @OPMYJI JUISI BBIYUCJIEHUA UHTEI'PAJIOB
MPOHU3BOJIBHOM KPATHOCTH

AnHoTanmusa. B mamHOIl paboTe paccCMOTPEHO BBIYHCICHHE HHTETPAIOB IIPOM3BOIBHOM KPATHOCTH METOIAMH:
HEepaBHOMEPHBIX ceToK, MoHTe-Kapno u onTuManbHbIX K03QQUIMeHToB. Bl cienan cpaBHUTENbHBIN aHATN3 YKa3aHHBIX
YUCICHHBIX METOJIOB HMHTETPHPOBAHUS MHOTOKDATHBIX HMHTETPANOB. YCTAHOBIEHO, 4YTO METOJ ONTHUMAJIbHBIX
K0d(QdULMEHTOB 00a1aeT NPEUMYIIECTBOM MO CPaBHEHMIO C OCTaldbHBIMU MeToAamHu. IToka3aHo, 4TO HCIOIb30BaHHE
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HEpaBHOMEPHBIX M MapajuleJIeNUIeaIbHbIX CETOK COCTAaBIIIET OCHOBY OOJIBIIMHCTBA DPE3YJIBTATOB, IOJyYEHHBIX B
o0JlacTH TIPEMEHEHHsI TEOPETHKO-YMCIOBBIX METOJNOB K BONpOCaM IPHOIIKEHHOTO aHalli3a. YCTaHOBIEHO, YTO
MHTEPNOJALUS QYHKIUH MHOTHX TIEPEMEHHBIX TEOPETUKO-YHCIOBBIMU CETKAMHU MO3BOJISET MOJIYYUTh HHTEPHOISIIIMOHHBIC
(hopMyIIBI, TOYHOCTh KOTOPBIX BO3PACTAET C YBEIMYEHHEM TJIaIKOCTH (QYHKIMH. UHCIIO MepeMeHHBIX B 3TOM Ciydae He

a
OKa3bIBACT CYIICCTBECHHOI'O BJIHMAHUA HA MNOPAAOK MAJIOCTH OCTATOYHOI'O YJICHA. Hcnonb3oBanue beHKHIfH/I f (S Ev K

ko3¢ dunuentaMm @Dypbe I03BOISLET MOIYUUTh HHTEPHONALHOHHYIO (GOPMYILy M3 KBaApaTypHbIX (GOPMyJ, KOTOpPbIE
MOCTPOEHBI ¢ TIOMOMIBIO TTapauleNleieJalbHBIX CeTOK. Takas (opMyna TOYHA IJIsI TPUTOHOMETPHIECKHX IMOIMHOMOB,

s
CTEIIEHb KOTOPBIX HE IMPEBOCXOAMT BEJIIMUUHBI A/ N In 2 N .

KioueBble cjIoBa: TEOPETHKO-YMCIOBOW METOM, KBajpaTypHas (opMyia, METOJ ONTHMANBHBIX KOd(QUIHEeHTOB,
MHOT'OKPaTHBIE HHTETPAJIBI.
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SOLITON SOLUTIONS FOR THE (2+1)-DIMENSIONAL
INTEGRABLE FOKAS-LENELLS EQUATION

Abstact. Studying of solitons led to the discovery of a number of new directions related to it. There is interest in
which is also enhanced in connection with the discovery of new examples in which soliton processes are manifested.
The number and variety of nonlinear equations containing solitons as the most interesting solutions significantly
increase due to generalizations to the two-dimensional and three-dimensional cases. Such popular transformations as
Darboux, Backlund and Hirota's bilinear method are often used to find exact different kind of the solutions of
nonlinear equations.

In the present paper, we present Lax pair of the (2+1)-dimensional integrable Fokas-Lenells equation. The
bilinear form of the (2+1)-dimensional integrable Fokas-Lenells equation was obtained by the Hirota’s bilinear
method. By using Hirota's bilinear method, we construct exact one-soliton and two-soliton solutions of the (2+1)-
dimensional Fokas-Lenells equation. The graphics of the obtained solutions are presented. The obtained new results
have important physical applications.

Keywords: Hirota method, Lax representation, soliton solution, Fokas-Lenells equation.

Introduction. In many areas of science, the object of intensive theoretical and experimental research
is soliton which is mean the "solitary" wave (solitary wave). Soliton can be used to transmit information,
where the main idea is to use in each bit interval to represent units in the stream of binary signals.
Mathematically, solitons are localized stationary solutions of nonlinear partial differential equations or
their generalizations.

One of the generalization of nonlinear Schrodinger is the integrable (1+1)-dimensional Fokas-Lenells
equation (FL) [1, 2] which was proposed by J. Fokas and A.S. Lenells. At present, studying
multidimensional integrable systems containing derivatives in more than two variables is very interesting
and relevant and namely finding exact soliton solutions. In this regard, by considering the (1+1)-
dimensional FL. equation, we obtain the (2+1)-dimensional FL equation and present its Lax pair [1, 2].

The paper is organized as follows. In Section 2, we present Lax representation of the (2+1)-
dimensional FL equation. Hirota method is presented in Section 3. Namely, we apply Hirota method for
FL equation and find one soliton and two soliton solutions by obtained bilinear equation. In Section 4, we
give conclusion.

Lax representation. The (2+1)-dimensional FL equation is given by next form

. . 2 .
qut - quy + 2Qx - qx Q‘ + lq = 07 (1)

where { is the complex shell of the field, the indices x, y and ¢ denote the partial derivatives with respect

to the arguments x, y and 7, and 1 is the complex number.

To construct solutions of differential equations, a number of conditions must be fulfilled, one of
which is to satisfy the compatibility condition [1]. The studied equation (1) satisfies the "compatibility
condition" and has the following has a Lax representation

— 130 ——



ISSN 1991-346X 6. 2019

Y =UY, U=-ilo,+10,
1 i
qjt:\Py-i-W\P, W:W0+EW71_WG3,

where ¥ = ¥ (x,t) is a 2x2 matrix-valued eigenfunction, A is an isospectral parameter, and matrices are

given in the form:

0 g, iqr i(0 ¢ 1 O
- Wy =ioy- Loy, W, =L oy .
o (rx 0] 03Ty T 2(—1’ OJ 3 (0 —1)

Hirota's bilinear method. Soliton solutions of the (2+1)-dimensional FL equation will be
constructed by the so-called bilinear Hirota's method. The outline for constructing soliton solutions by this
method is as follows:

1. The first we apply the dependent variable transformation for FL equation in order to obtain its
bilinear form.

2. The second we consider the formal series of perturbation theory.

3. The third we build multi soliton solutions.

One-soliton solution of the (2+1)-dimensional FL equation. In order to construct soliton solutions

of equation (1), we use the bilinear form of FL equation has the form [6] 4 = §. Then the bilinear form

of the FL equation

iD.D,(g- /) ~iD,D,(g- f)+2D,(g- ) +igf =0, 2o
DD+ £ )=iDD,(f £ )= Dy(g-8) =0, 26)
DS f)=iD(f 1) 5808 =0, (n)

iD,(f £ =D £ =5 282 =0, e

o

where & is complex function, f is real one, the sign means complex conjugation and Dx R Dy , Dt ,

are bilinear differential operators which defined by

. o oY(o oY ‘
DmDn . - = _ - ,t !,t! s
eoir-r (22 V(2-2) far ..

where x',¢" as two formal variables, f'(x,t) and f (x',¢") - two functions, 7 and 7 - two non-

negative integers.
Then, we expand the functions & and f in bilinear equation (2) with respect to small parameter &

as follows [2]:
g(x,y,t)=ggl(x,y,t)+83g3(x,y,t)+..., (3a)
f(xﬁyat) = 1+82f2(x9y7t)+84f4(x9y9t)+"-9 (36)

where gj is complex function, fn isreal ones ( j=1,3,5,..; 1 =24.6,...).
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In the case of a one-soliton solution of equation (1), the formal parameter in equation (3) is taken as
E=land j=1,n=2,ie

g = &4, (4a)
f=1+&*f, (46)

and we find the solution according to the following statement:

g__&
fo+h

2
where g =e€ l, 91 = a1x+b1t+cly+dl and 91* = afx + bl*t'i‘ C;ky + dl*’ here al,bl,cl,dl -
complex constants.

Substituting expression (4) into equation (2) and collecting in powers of the parameter &, we get
next system

q= )

g : (iD,D,—iD.D,+2D,)(g 1) +ig, =0, 6)

g : (iD,D,—iD.D, +2D,)g - f,)+ig f> =0, %
£ 5 (DD~ DD+ 13) - Dler-g) =0, ®
A liDt(fz'fz*)—liDy(fz‘fz*)zoa )

g i(D,-D)(f; —fz*)—%gl g1 =0, (10)

gt WD, =D)(f> f2)=0, (1)

& 5 DD +IDDS D= gigh =0, 1)
et o (D =D)(fs fr:)=0. (13)

Now, applying the properties of the Hirota operator to equations (6) - (13), we obtain

1

£ 1 gy — I8y 281, +ig =0, (14)
e 1 iginfy —igufax —i81x o +181 fon — g o +Hig1 o +
+ig foy —i81 20 + 281 /2 —281/2x +i81/2 =0 (15)
£5 1 ifay +if2*tx /L. _ifZ*yx _%glng +%glgrx =0, (16)
e 1 i Sy —ifa o~ i S H i o — o s+
+ifay for +ifaxfry =i fap =0, (7
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2 . - e . s | *
7t ify —ify —ify, +ifsy, 588 = 0, (18)
4 . Lk Lk
g Uy fs —ifafu — iy fo +ifa S, =0, (19)
2 . . Lk 1 *
& lhatihy —5 218, =0, (20)
4 . * . * . * . *
e Uy fox —Wafox — iy Sox +if2fox, =0. 21)
By solving the system of equation (14)-(21) we can get from equation (14)
a :; (22)
: c,—b +2i

the equation (15) gives conjugation form of &;

. 1
a=—— 23
1 c:—bl*—Zi 23)

and from equations (16) - (21) we obtain
.2 % %
la; a, 6,+6

fr=—"Dt 1 4)
? 2(“1*‘“1)2

Then by substituting equation (24) into equation (5), we obtain the one-soliton solution of the (2+1)-
dimensional FL equation, which is
(2 *\2
1 2(
e a +a

2
1+

iala, o 7 6
ia;a * - . *
#*23'914_ I 2a,+a))’e \ +iataje!
2(ay +ay)

or if rewrite equation (25), with 191 = K| + X, then we get

iy
4aie™

q= (26)

_ 1 . ’
405129 " +2(0€12 +,512)(1051 _,31)31(1
where
n=px+vit+ny+n, K =ogx+put+oy+m

with
a1=0(1+i,51, b1:ﬂ1+ivl, CIZO-1+iT1, d1:m1+in1.

Finally, the equation (26) has the form
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2 i
g= pe , 27)
@(ﬁeﬁ P, KIJ
p Jh
J 1
where p=2¢; and h = é(alz + ﬂlz o, _E(alz + ﬂlz VB
I . _ 0 P _51 . .
n addition, when — = ¢ and —— = ¢ the equation (27) can be rewritten as
p Jh
i i
pe pe
=———ysech(k; +0,) = . (28)
170 e = cosh(x; + &)

So, the equation (28) is one-soliton solution to the (2+1)-dimensional FL equation. Plot of the one-
soliton solution is presented in Figure 1.

(a) (b) (©)
Figure 1 - Dynamics of the one-soliton solution with next parameters:

a=1-i,¢c;=1-=i,b =1-iand d, =1—i.t=-5();t=0(b);t=5(c).

Two-soliton solution of the (2+1)-dimensional FL equation. To find the two-soliton solution of
equation (1), the formal parameter in equation (3) is taken, as & = I and Jj= 1,3, n=24,ie.

e  (D,D,—iD.D,+2D, ) (g 1)+ig, =0, (30)

g : (iD,D,—iD,D,+2D,)(g, - f>+gs 1) +ig [, +ig; =0, (31)

g (iDyD; —iD,D,, + 2D, )(g, - f4 + &3 [2) +igi1 f4 +ig3/, =0, (32)

g (iDD; —iD,D, +2D,)(g3 - f4)+ig3/4 =0, (33)
. w1 %

g* DD, —=D.D,)(f>+f5 )= Dulgi-g1) =0, (34)

&' L iDD(fo o + fa+ [ =IDD(fr- [y + fut f1) -
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—%Dx (8183 +8381) =0, (39)
e iD,.D,(f> 'f4* + /4 'fz*)—liDy(fz ‘f4* + /4 'fz*)—

—%Dx (g383)=0, (36)
g iD.D,(fy- f1)=iD.D,(fy-f)=0, (37
g i(D,—D,)f —fz*)—%gl g =0, (38)

gt i(Dz—Dy)(fz-fz*)H(Dt—Dy)(f4—ff)—%(g1'g§+gfg3)=0, (39)

g i(D; —Dy)(f - f4)—i(D, —Dy)(f> ’f4)—5(g3 -83)=0, (40)
&' 1 (D, =Dy)(fy f3)=0. (41)
: . * | R
&+ (DD +iDD,)(fy D=7 &i181x =0, 42)
et (D, =D)(f2 - fox) —i(f4x _f4xy)_5(g1g3x +2381,) =0, (43)
. * * 1 *
e l(Dt_Dy)(fZ'f4x+f4'f2x)_5g3g3x:07 (44)
g+ (D, =D)fi fi)=0. (45)

By applying the properties of the Hirota operator we solve the system of equation (30)-(45), and can
get the two-soliton solution of equation (1), which has the next form

g= g &
I+ 1, + 1,

(46)

where

0, 0
=, 2
g e +e-,

6,10,+6, 6,160,+0,

g, =ke + k,e ,

o+6 0.+6; ) 0,465
fo=le T +le' 2 +le! t+le? ?

b

* *
491+91 +02 +o92

fy=me >
with

O =ax+bt+cy+d, 6 =ax+bt+cy+d,,
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0,=a,x+bt+c,y+d,, 6, =ax+bt+c,y+d,,
B iafal* B iafa; B iazzal* B iazza;
2a,+a)) " 7 2a+a)’ 7 g +ay)? N 2Aay +ay)?
. *\3 2 . *\3 2
l(al) (az _al) _ l(az) (az _al)

- * 2 *.2 9 2_ #*\ 2 *\2 2
2(a, +a,) (a, +a)) 2(a, +a,) (a, +a,)

1

_(az —a,) (a,—a,) (a, +a,+a +a))aa,a;a,
2(a, +q, )2(612 + a2)2(a1 + a2)2(a2 +4q )2

and a,,b ,c, ,d, -complex constants, n=1,2.

-10

(@

Figure 2 - Dynamics two-soliton solution with next parameters:
a, =0.5+0.5i, ¢, =0.5+0.5i, b, =0.5+0.5; and d, =0.5+0.5;. f =—5 (a); t=0(6); t =5 (c).

Conclusion. Thus, we studied (2+1)-dimensional Fokas-Lenells equation by the Hirota’s bilinear
method which is considered one of the effective methods for finding exact solutions of integrable
equations. By using this method, exact one-soliton and two-soliton solutions of the (2+1)-dimensional FL.
equation are constructed. Additionally, we present the graphical representation of the obtained soliton
solutions.

M.B. KacbioaeBa, K.P. EcmaxanoBa
JL.LH. T'ymunes arbinaarsl Eypasus yntTeiK yHuBepcuTeTi, AcraHa, Kasaxcran

(2+1)-OJIITEM/II HHTETPAJITAHATBIH ®OKAC-JTEHIJIIIC
TEHJEYTHIH COJIMTOHAbI INEIIM/IEPI

AnHoTanus. COJMTOHIAPIBI 3€PTTEYy CONMTOHMEH OailIaHBICTBI OipKaTap jkaHa OaFbITTApIbIH AlIbUTYbIHA
anpin kesai. COHbIMEH Katap, COMMTOHIBI IpoLecTep OaiiKaiaaThiH KaHa OarbITTapIbIH AIbLTYbIMEH OaiJIaHBICTHI
KBI3BIFYIIBUTBIKTAp 0ap. CONUTOH KYPaNThIH CHI3BIKTH €MEC TCHACYJICPAIH CaHbl MCH alyaHABIFbl €Ki KMl XKoHEe
YIII eJIIIeM/Il XKalblIayiapra Kelly apKbUlbl KYHHEH-KYHTe apTyaa. JapOy, BakinyHa TypaeHaipyi skoHe XUupOoTaHbIH
OMCBHI3BIKTEI 9JICi CHSKTHI TaHBIMANl TYPJICHIOIPYJIEP CBHI3BIKTHI eMec TeHIACYJEepIiH dp Typii IenriMuaepin Taly
Ke31H/€e K1l KOJIIaHbLIa b,

Jlemek, OepiiareH s>KyMbIC aJIAbIHFBI Ta0bUTFaH (2-+1)-emmem i naTerpaigadatein Pokac-JIeHdIcC TeHACY] KoHE
OHBIH OMCBI3BIKTBI TYPI aTThl KYMbBICHIMBI3/IBIH JKaJIFachl 00JbIN TaObutazbl. EHIL, 3epTTeyiepimizii >kalracTbipa
OTBIPBIN, XUPOTa JICi apKbLIbl HHTErpaiaHateiH (2+1)-enmemai ®oxac-JIenance TeHaeyiHiH 1-COMTUTOHIBI XKOHE
2-COJIMTOH/IBI WIEeUTIMepi Ta0bUIbIN, rpadUKTEpl TYPFBI3bULABL. Bi3/iH TanKaH HOTHXEIEePiMi3 MaHbI3Ibl (PH3UKAJIBIK
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KOJLIAHBICKA €.
Tyiiin ce3aep: Xupota omici, Jlake kepinici, comuronas! memnrim, @okac-JIeHdIuIc TeHaeyi.
MLB. KacbioaeBa, K.P. EcmaxanoBa

EBpasuiickuit HartmonanbHeIA yHUBepcuTeT uM. JL.H. I'ymuneBa, Acrana, Kazaxcran

COJIMTOHHBIE PEHIEHUA (2+1)-MEPHOI'O
HUHTEI'PUPYEMOI'O YPABHEHUS ®OKACA-JIEHIJIUICA

AHHOTANHsA. YCIEXH B UCCIECIOBAHUU COJIMTOHOB IMPHUBEIH K OTKPBITHIO IEJIOTO Psa HOBBIX HAINPaBIICHHNA
CBSI3aHHBIX C HUM, TEM BJIOXHOBIUIU OYPHOIH aKTUBHOCTBIO MCCIICAOBATENICH B MAaHHBIX HampaBleHusx. Kpome Toro,
HHTEpEC, K KOTOPOMY YCHJIMBAETCS TAKXKE B CBSI3M OOHAPYKEHUSIMH HOBBIX MPHMEPOB, B KOTOPBIX MPOSBISIOTCS
CONUTOHHBIE TIporiecchl. KommuecTBo U pa3sHOOOpa3ne HEMMHEHHBIX yPaBHEHUH, COIEPIKAIINX COJTUTOHBI B Ka4eCTBE
HanbOollee WHTEPECHBIX pEIICHWA, CYIIECTBEHHO YBEIMYMBAIOTCS Onaromapst oOOOIIEHWSM Ha IBYMEPHBIE M
TpexXMepHBIe cirydau. [ HaX0KACHUS COJUTOHHBIX PEIICHUH HENWHEHHBIX YpaBHEHUH YacTO MPUMEHSIOTCS TaKue
oIy JIsipHEIe Tpeobpa3oBanus, kak [lapOy, baxkmynna u metox XupoTsl.

Takum oOpa3zom, naHHas paboTa SBIAETCS MPONODKCHHEM Hamieidl mpeaplaymeil paboTel, B KOTOPOH OBLIO
HaiineHo (2+1)-mepHoe uHTErpHpyemoe ypaBHeHne Dokaca-Jlenaica u mocTpoeHa ee OmmuHEHHas popMa METOAOM
Xupotsl. Tenepb, IpoAoKas HAIIM UCCIEIOBAHMSI, METOJIOM XHUPOThl HAWJEHBI €ro TOYHbIE |-cONMMTOHHOE U 2-
COJIMTOHHOE PELICHUS C IOMOIIBIO YK€ MOJTy4YeHHOH HaMu OmitnHelHo# ¢opmbl (2+1)-mepHoro ypaBuenust ®okaca-
Jlenanica v mocTpoeHk! uX rpaduku. HaliieHHble HAMU pe3yJIbTaThl HMEIOT BaXKHBIC (PH3UUCCKUC MTPIITOKCHHUS.

KioueBble cioBa: Meton XupoThl, mpencraBieHue Jlakca, comuToHHOe pemieHue, ypaBHeHune okaca-
Jlenninnca.
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SOME QUESTIONS ON EXTERNAL DEFINABILITY

Abstract. The article discusses the various approaches to the concept of external definability developed in o-
minimal theories. An example of o-minimal theories shows how external constants help determine the existence of a
solution in a model of a formula with external constants. The basic concepts are formulated with the help of which
external definability is proved. A brief review of the results for dependent theories is given. In conclusion, sufficient
conditions are formulated so that the NSOP theory has the some property of external definability. A brief explanation
of the stated theorem is given.

Keywords: externally definable, neighborhood of tuple of the set in the type, non orthogonality of two types.

External definability. Let I be elementary substructure of N. Let @ € N\M and p: = tp(a|M). Then
for any formula ¥ (x,y) define the predicate Ry, ) (¥) on the set M, = Ry, ) (@) iff Y(x, a) € tp(a|M)
iff ¢ = (@, a). Denote by M* = (M; £¥), where *: = {Ry ) (¥)|p € S(M), Y € }. It follows from
definition that if a pair of models (M, N) is conservative pair (type of any tuple elements from N over M is
definable), then the structure I is the structure obtained from M scolemisation of M. We will consider
the simple cases when MM+ constructed from one 1-type for o-minimal theory from two approaches.

Let MM be a model of an arbitrary complete theory T of the signature X. We say that EIR; is expansion
of M by type p € S; (M), if MF: = (M; E}), where ZF: = {Ry,,) ) [Y € Z}.

We say that M5 admits uniformly representation of X;-formulas by X-formulas, if for any formula
¢(¥) of X there exists Z-formula Ky (¥,2), there exists @ € N\M such that for any @ € M the following
holds:

M E P(a) oF Ky(a,a).

Approach of Macpherson-Marker-Steinhorn. In the paper [1] (preprint 1994 Macpherson-Marker-
Steinhorn proved weak o-minimality of the expansion of an o-minimal structure by unary convex
predicate, such that the predicate is traversed by a uniquely realizable 1-type. Following D. Marker [5], an
uniquely realizable 1-type p € S;(M) over model is that prime model over model and one realization of
this 1-type p contains just this element from the set of realization of the type. An uniquely realizable 1-
type has the next property: there is no definable function acting on the set of realizations of this 1-type p.
Macpherson-Marker-Steinhorn considered at the same time two structures IM* = (M; X U {U'}) and
N = (N; X), where Jt is a model of an o-minimal theory of the signature X and a saturated elementary
extension of M. They defined a new unary convex predicate U by using an element « € N\M from the set
of realizations of an irrational 1 —type p € S;(M) such that for every a € M the following holds:

MtEeEU(@ ©NEFa<a.

By induction of construction of formulas ¢(¥) of the signature =+ = X U {U'} there is a formula
Ky (¥, @) of the signature ¥ such that for any @ € M the following holds:
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forany n, k,m < w,

%, (@, A1) oo i) < %, (Untk+1 Tnskt2s - Angksm)s

and consequently, all these sets have empty intersection. D. Marker proved that for any set A in o-minimal
theory, for any q,r € S;(A) if q and r are not weakly orthogonal than there is A —definable monotonic
bijection from q(9t) to r(N). Then for r € S;(M), p; non weakly orthogonal to r, QV,.(@)nN
QVr (@i, antiv1s s A2ng1) = 0.

M £ Pp(@) © N E Ky(@ a). (1)

The crucial point in this construction was the case ¢(¥) = Ixy(x, ¥). They proposed
Kaxpy) @ @)= 32132,3x(2y < @ < 2, AV2(z1 < 2 < 25 2 Ky 3 (X, ¥, 2)).

Since the 1-type p € S;(M) is uniquely realizable, two convex to right and to left from a« Ma — 1-
formulas have solutions out of p(J). Thus for any a € M, if | & K3,y (x5 (@, @), then for some by, b, €
M,

NEIx(by <a < by AVz(by <z <b; = Kyuy) (x4 2)).

This means that in an elementary submodel of Jt the part of the last formula holds on Mt =
AxVz(by <z < by = Ky (x35)(x,a,z)). Then there is an element ¢ € M such that M E Vz(b; <z <
b; = Ky(x3)(¢, @, 2)). So, Ky, (x3)(c, @, z) € p.

Thus, any X*-M-1-formula ¢ (x, @) has the set of its realizations, ¢(M*, @) = Ky (N, a) N M, being a
finite union of convex sets because Ky (9, @) is a finite union of intervals and points. The elementary
theory of M™* is weakly o-minimal since the number of convex sets is bounded and consequently does not
depend on parameters.

Approach of B.S. Baizhanov. For the case when p € §{(M) is a non uniquely realizable type, B.S.
Baizhanov proposed [2] (1995), on the base of theory of (non)orthogonality of 1-types and its
classification made in [4], [5], [6], [8] (Pillay-Steinhorn, Marker, Mayer, Marker-Steinhorn, 1986—1994),
to take the constants for K3yy(xy) from an infinite indiscernible sequence I = (@ )n<, Over M and a,
from p(I). Taking into consideration that if Ky (x5 (M, @, @,) N M = @, then there is a finite number
irrational cuts (1-types over M) such that for any such 1-type r € §; (M), Ky (x5, (9, @, @y,) is a subset of

QV.(ap):={B € r(I) | there exists an M a,-1-formula O(x, ,,), such that
B EOM a, cr(M)}.

The idea to use an indiscernible sequence consists from two parts.

B1. On the one hand, if for some ¢ € M, N & Ky 5)(¢, @, &y), then for any y = (a;, ..., a;,) (n <
o <+ <lip), N E Kyxy)(c av), because @, and y have the same type over over M.

B2. On the other hand, to find a sequence I such that for any r € S;(M), for any ¥ = (@, ..., @;,)
(n <ip < <iy), Q- (@) NQV(¥) = 0.

For find the indiscernible sequence I define the properties A1-A3 that follow from the classification
of 1-types and theory non orthogonality of 1-types over sets in o-minimal theories.

Al. [S5] (Marker 1986). Let q,v € S;(A), and let type q(x) U r(y) be non complete (q is non weakly
orthogonal to r, Shelah, 1978). Then there is an A-definable monotonic bijection g:q(Jt) = r(N) and
consequently, q is irrational if and only if v is irrational;

q is uniquely realizable if and only if r is uniquely realizable.

Recall that if g € S;(A4) is irrational then g(Jt) is a convex non-definable set without maximal and
minimal elements.

A2. If q € §1(A) is irrational, then for any v, QVy(¥) = Vi (v), here

Va@):={B € q(N) | 361,68, € q(N), there exists an Ay-1-formula S(x,7), §; < SN, ¥) < &,
B eSOV}
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Indeed, the quasi-neighborhood of v in q (QV4 (7)) is the union of Ay-definable sets, and any such
definable set is a subset of gq(91), a convex non-definable set without minimal and maximal elements. The
last means that such a definable set is a subset of V, (¥) ( neighborhood of y[n q). This explains equality of
two convex sets.

A3. If q € $1(A) is irrational and non uniquely realizable, then for any y € N, if QV,(y) = @ then
the I-types q(x) U {x < QV,(¥)} and q(x) U {QV, (V) < x} are irrational and non uniquely realizable.

By A2 and theorem of compactness there exist 81,5, € q() such that §; <V, (¥) < &, and because
q is non uniquely realizable i.e. there is A-definable monotonic bijection f: q(9t) = q(I1), V() can not
have minimal and maximal element. Taking in consideration that for irrational g, () is a convex non-
definable set without maximal and minimal elements, ry: = tp(§;]|AY) and 1, = tp(5,|Ay) are irrational
and since f(V;(¥)) = Vz(¥), f acts on r;(N) and r,(N). The last means r; and 7, are non uniquely
realizable.

Let pp(x): = p(x) U (QV,(@n—1) < x). Then by A2, A3 pj, is irrational, non uniquely realizable and
finitely satisfiable in M since right sides of p and p,, coincide

Foranyn, k,m < w,

QVpn(anr Apg1s s Angi) < QVpn(an+k+1' Antks2r o Ansktm)) 2

and consequently, all these sets have empty intersection.

The proof of (2) is done by induction on m. Assume (2) for m. Denote by r(x) =p, U (x <
QVp, () (@ntk+1s ) Anti+m)) and 12 (¥) = pr (V) U (QVp,, (ntk+1s ) Antk+m) < ¥), Suppose that

QW (@n, g1y ooos Angic) N QVy (Apgia1s o Anakrms Ansksm1) = @. Since the first set does not
change, there exists M@, Qpiki1 - Tnaksmer-formula L(x, @pikame1) such LM, apykime1) ©
QW (@, Ay, ooy Angr) © (). Let B be end point of one of interval of formula L, then because p,, is
non uniquely realizable then g € QV, (@n, @pi1, ) Anyx) € T(I). Since B = 1y and dpipyme1 F 72 by
Al there exists M@,piki1 - » Antk+m-definable monotonic function f:7,(Jt) - 14 (Jt) such that
f(@nsk+m+1) = B. On other hand B € QV,, (@n, Apy1, -, Ansx) and consequently, there is May, 4 — 1-
formula H(x) such that g € H(M) < QV, (@n, Aps1s o) Angx) € 11(9). Then apypimsq1 belongs to
M@y, .y +m-definable set f~1(H(N)) € 1, (). This means ;g 4me1 € QV, (@p4k+m)- Contradiction.

It follow from (2) and Al that for any r € S;(M), if for any i <n, p; L™ r and p, £" r then
QV(@) N OV (@, ntivrs o0 A2n1) = .

QV-(@) N QVi (@, Anyigry oo Aongr) = 0 (3)

Suppose for the formula ¥(x,y) of signature T* corresponding formula of signature I is
Kyx3)(x, Y, @y). Thus for any formula Ky, (x, @, &) to have the solution in M it is sufficient to write the
formula

KEle/J(x,)?) O, Ang1): = Elx(Kll)(xv Y, an) A
Nisn Ky, Y, Gy Qn—iy+n+1 An-iy+n+2 -+ Xant1))-

B.S. Baizhanov in 1996 obtained a classification of 1-types over a subset of a model of weakly o-
minimal theory and solved the problem of expanding a model of weakly-o-minimal theory by a unary
convex predicate in the preprint "Classifications of 1-types in weakly o-minimal theories and its
applications" and submitted in the JSL, that revised version published in [9](2001). Ye.Baisalov and B.
Poizat [10] (preprint 1996) in the paper on "beautiful" pairs of models of o-minimal theories proved the
elimination of quantify 3x € M. It is difficult to say that the approach in [10] is alternative to approach
elaborated in [2], because they used the same principles B1-B2 from [2].

We say that It the expansion by all externally definable subsets admits quantifier elimination, if for
any formula ¢(y) of X there exists Z-formula K (¥, Z), there exists @ € N\M such that for any @ € M

the following holds:
M £ p(a) oF Ky(a,a).
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Approach of Shelah. In his paper, S. Shelah [11] (2004) considered a model of NIP theory and
proved that the expansion by all externally definable subsets admits quantifier elimination and thereby is
NIP. The key problem here is eliminating quantifier "there exists in the submodel". In his proof in the way
of contradiction Shelah used an indiscernible sequence (b,;:n < w) in order to show that if eliminating
quantifier "there exists x in the submodel" ¢(x, @) fails, then ¢(a, b,,) holds iff n is even, for some a,
which implies the independence property, for a contradiction.

V.V. Verbovskiy [12] (preprint 2005) found a somewhat simplified account of Shelah's proof, namely
by using noting of a finitely realizable type. A. Pillay [13] (preprint 2006) gave two re-proofs of Shelah's
theorem, the first going through quantifier-free heirs of quantifier-free types and the second through
quantifier-free coheirs of quantifier-free types.

The analysis of approaches shows that the using the theory of orthogonality we can control the set of
realizations of one-types. If we consider the complete theory satisfies A2, it gives the possibility to
construct the indiscenible sequence satisfied the condition B2. Notice that the of indiscernible sequence
constructed by mathematical induction satisfies the condition of finite realizability of an one-type of new
element over model and beginning of sequence. The generalization of the approach for o-minimal model
in case of non uniquely realizable one-type by introduction of generalization of the notions of (quasi)-
neighborhood and almost (non)-orthogonality of two types gives the possibility to formulate the next

Theorem 1 Let T be a complete NSOP theory such that for any set A the following holds:

1) For any p € S;(A), forany v, QV,(7) = V,,(¥)

2) For any p, q € S;(A) the following holds. If p £% q, then q £% p.

Then for model of the theory T the expansion of this model by one-type admits uniformly
representation of X -formulas by 2-formulas.
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HEKOTOPBIE BOITPOCHI O BHEIITHEM ONPEJEJIMMOCTH

AHHoTanusi. B crartee paccMaTpuBarOTCA pa3iIMYHBIE MOAXOMBl K KOHIICHIMHM BHEIIHEH OIpeIeTUMOCTH,
pa3paboTaHHbIE B O-MHUHHMAIbHBIX TEOpHsX. [IpuMep O-MHUHMMAIbHBIX TEOPHH IIOKa3bIBAaeT, KaK BHEIIHHE
KOHCTAaHTBl TOMOTAIOT OIPEACINUTh CYIIECTBOBAHUE PEUICHHs B MOJeNd (DOPMyNbl C BHEIIHMMH KOHCTaHTaMH.
CchopMynupoBaHbl OCHOBHBIE ITOHSTHS, C MOMOLIBIO KOTOPBIX JOKA3bIBAETCS BHELIHSS ONpelnesMMOcThb. JlaeTcs
KpaTKuii 0030p pe3ysIbTaToB AJIsl 3aBUCUMBIX Teopuil. B 3axmouenue copMympoBaHbl JOCTaTOYHBIE YCIOBUS, TaK
4TO Teopus o0agaeT CBONCTBOM BHEIIHEH onpenesuMocTu. [laHo KpaTtkoe 0ObsICHEHHE H3JI0KEHHOH TEOpPEMBI.
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JIBYX TUIIOB
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CBIPTKbBI EPEXKEJIEPTE KATBICTbBI CAYAJIJIAP

AnHOTanusi. Makanaza o-MHHHMMAaJAbl Teopusulapla >KacajiFaH CBIPTKBI aHBIKTaMa TYKbIPhIMAaMachlHa
OpTYpJi Ke3KapacTap KapacThlpbUFaH. O-MHHUMAaIIbl TEOPUSUIAPIBIH MBICATBI CBHIPTKBI TypakTbuiap (opmyia
MOJICNiHE epITIHAIHIH OOJYBIH aHBIKTayFa KOMEKTECETiHiH Kepceremi. Herisri yYFeIMIap CHIPTKBI aHBIKTAIybI
TONIENNICHTeH, TYKBIpBIMAAIFaH. Toyemni TeopusulapaslH HOTHXKEJepiHe KBICKAallla IOy  KeNTipilreH.
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KopuIThIHIBIIAM Kee, Teophs CHIPTKHl aHBIKTAy KACHETiHe He OONaTBIHIAW >KEeTKUTIKTI JKaraiiap jKacallFaH.
Kepcerinren TeopeMara KbIcKamia TyCiHiKTeMe Oepineni.
Tyiiin ce3aep: CEIPTKHI aHBIKTAIFAaH, THIITET1 YKUBIHHBIH KOPIIILJIEC, €Ki TYPre KaTIai THIHABIFEL.
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