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CORRECTNESS OF THE MIXED PROBLEM
FOR ONE CLASS OF DEGENERATE MULTIDIMENSIONAL
HYPERBOLO-PARABOLIC EQUATIONS

Abstract. It is known that in mathematical modeling of electromagnetic fields in space, the nature of the
electromagnetic process is determined by the properties of the medium. If the medium is non-conductive, we get
degenerate multi-dimensional hyperbolic equations. If the medium has a high conductivity, then we go to degenerate
multidimensional parabolic equations.

Consequently, the analysis of electromagnetic fields in complex media (for example, if the conductivity of the
medium changes) reduces to degenerate multidimensional hyperbolic-parabolic equations.

Also, it is known that the oscillations of elastic membranes in space according to the Hamilton principle can be
modeled by degenerating multidimensional hyperbolic equations.

Studying the process of heat propagation in a medium filled with mass leads to degenerate multidimensional
parabolic equations.

Consequently, by studying the mathematical modeling of the process of heat propagation in oscillating elastic
membranes, we also come to degenerate multidimensional hyperbolic-parabolic equations. When studying these
applications, it is necessary to obtain an explicit representation of the solutions of the studied problems.

The mixed problem for degenerate multidimensional hyperbolic equations was previously considered.

As far as is known, these questions for degenerate multidimensional hyperbolic-parabolic equations have not
been studied.

In this paper, unique solvability is shown and an explicit form of the classical solution of the mixed problem for
one class of degenerate multidimensional hyperbolic-parabolic equations is obtained.

Keywords: mixed problem, classical solution, unique solvability, Bessel functions, spherical functions.

item 1. Introduction. The mixed problem for degenerate multidimensional hyperbolic equations in
generalized spaces has been studied [1,2]. The correctness of this problem was proved in [3,4] and an
explicit form of the classical solution was obtained.

As far as we know, these questions have not been studied for degenerate multidimensional
hyperbolic-parabolic equations.

This article shows the unique solvability and obtains an explicit representation of the classical
solution of the mixed problem for one class of degenerate multidimensional hyperbolic-parabolic
equations.

item 2. Statement of the problem and results. Let Q_, — the cylindrical region of the Euclidean

space E , of points (x,,.....x,,¢) bounded by the cylinder I'= {(x,?): |x| =1}, the planes t =a >0 and

m+1

t= /<0, where |x| — the length of the vector x = (x,,...,x,) .

We denote by Q, and Q, the parts of the region Q_,, and by I',, I'; the parts of the surface

B
I" lying in the half-spaces >0 and #<0; o, — the upper and o, — lower base of the area Q .

af ?
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Let further S be the common part of the boundaries of the regions Q, and Q ,, representing the set
{t=0,0<|q<1} in E,.

In the domain Q_,, we consider degenerate multidimensional hyperbolic-parabolic equations.

aff

A u—u, + Zd, (x,0u, +e(x,t)u, t>0,
i=1

0= @)

m

[t]” A u—u, + Zai(x,t)uxl +b(x,t)+c(x,t)u, t<0,

i=1
where p,q =const, p>0, g=0, A, -isthe Laplace operator with respect to variables x,,..,x, , m=>2.
In the future, it is convenient for us to switch from Cartesian coordinates x,,...,x,, ¢ to spherical

r,0,.,0 ,tr>20,050<27r,0<60<r,i=23,..m-1,60=(,..6,,).

P

m?

Problem 1. Find the solution to equation (1) in the region €, when 7#0 the class C(ﬁaﬂ)ﬂ
C'(Qaﬂ)ﬂ c@Q,)nc 2(Qa uQ ﬂ), that satisfy the boundary conditions

=0(r.0), ul, =y (t.0), )

= .(6.6), (3)

u

u

wherein go(l,@) =y, (a,&), v, (0,0) =y, (0,9).
Let be {Y iy (6’)} - a system of linearly independent spherical functions of ordern, 1<k<k ,

n,m n

(m—2)ntk, =(n+m—3)(2n+m-2), W)(S), [ =0,1,...- Sobolev space.
It takes place ([5]).
Lemma 1. Let f(r,8)e W/(S).1f I>m—1, then the series

fVﬁ%fiﬁiﬁ@Wﬁ@L “

n=0 k=l

and also the series obtained from it by differentiating order p </—m+1, converge absolutely and

evenly.
Lemma 2. In order that f(r,0)e W,(S), it is necessary and sufficient that the coefficients of the
series (4) satisfy the inequalities

0 k,
2
‘ﬁ)l(l’)‘SCI,ZZn”‘f"k(rX <¢,, ¢,c, =const.
k=1

n=1 =

By d'(r,t), d"(r,t), € (r,0), d"(r,1), p', @ (r), w' (¢), w' (), we denote the expansion

n

coefficients of the series (4) respectively, of the functions, dl.(r,H,t)p, diﬁ P,
r

e(r,H,t)p, d(r,H,t)p, p(ﬁ), i=1,...m,o(r,0),y,(t0),w,(t,0), and p(@)e C”(H), H —the unit sphere
in E, .
Let  be  a(r0,t),b(r,60,0), c(r,0,0)e W) (Q,)= C(Q,) d(r,6,1), er,0,) e W, (Q,),  i=1,.m,
[>m+1, e(r,@,t)s 0, V(r,&,t)e Q,.
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Then fair
Theorem. If o(r,0)e W/ (S), w,(t,0)e Wy (I,), w,(t,0)eW; (Fﬁ), p> 37m and

cosu p'#0,5=12,.., 5)

then Problem 1 is uniquely solvable, u  —where the positive zeros of the Bessel functions of the first

2+p

kind J ,,(z), B ,n=0,1,...

2
item 3. Solvablllty 0f Problem 1. In the spherical coordinates of equation (1) in a regionQ_ it has

the form
\ m-1 1 Y
Lu=t'\u, + u, ——ou |—u,+ E d.(r,0,0)u, +e(r,0,0)u=0, (6)
r r
i=1
m—1 l 6
55— mag (Slnm J= 19/ %J, gl :1, g/. =(Sin 91...Sin ej—l)z’ J>1

It is known ([5]) that the spectrum of an operator & consists of eigenvalues A, :n(n+m—2),
n =0,1,...., each of which corresponds k, to orthonormal eigenfunctions Y, ).

The desired solution to problem 1 in the domain Q_ will be sought in the form

u(r,0,1) ZZ (r.o)Y (0) 7

n=0 k=1

where " (r,z) are the functions to be determined.
Substituting (7) into (6), multiplying the resulting expression by p(€)# 0, and integrating over the
unit sphere H , for # we obtain ([3,4])

-1 = —_
£ plitt, — pliEt, + [’"—f’p; + d;o]a;,. +elul +
r i=1
— — ,0 k k |~k
tpiut —plut + ( tpf+ Y d! Ju +[e —A, 7ty (d) —nd} } 0.(8)
ZJZ{ Z Z

Now consider an infinite system of differential equations

_ _ m—1 _
r'pi, - pli, + "= i, =0, ©)
(m—l) . ke 0 e 1 —
t'plut - plu, p tpful’j—%t plul=— kl ,-E_l d'a +eu |, n=1,k=1k,
(m _1) k—k A 1 Sl Em Tk —k
u - +—t'o'u ——= tq =— d u +
pn nrr n nt r pn nr pn n kn — — ( in—1""n-1r

[ n ! Z(dm 2 (n l)dm l:l n— 1}7 k:m’ n=2’3 (10)

It is easy to verify that if {u: }, k= m, n=0,l,... is a solution to system (9), (10), then it is a solution
to equation (8).
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It is easy to see that each equation of system (9), (10) can be represented as

t"[ﬁn’;+(’”’”ﬁ:,—l; ﬁfj—‘nﬁ:ﬁk(r,t), (11)
r

r

where ff (r,t) are determined from the previous equations of this system, at that ];01 (r,t)=0.

Further, from the boundary condition (2), by virtue of (7), we have
i (r.a)=p(r), w (Le)=p () k=1k, n=01,.... (12)
In (11), (12), changing the variables o, (r,¢)=u*(r,t)— 7, (¢) we obtain

0@+ o -ty -t = P, (13)
r
0 (r,a)='(r), 05(1,1)=0 k=1k, n=0,L,.., (14)

At _
fHrn)= £ )y, + 25w, 0,0) =2, ()= v (@)

(l—m)
Having replaced 0" (r,t) =r 2 o (r,t) the problem (13), (14), we reduce to the following problem

Luf = t"(u,’;r +%u:] ) (15)
v, (r.a)=9;(r). v)(L1)=0. (16)
7= (= 08m=d2) G ) 0= ).
The solution to problem (15), (16) is sought in the form

v (r,t) =0k (r,t)+ 0 (r,2), (17)

where v (r,¢)— is the solution to the problem
Lot (r,1)= F5(r 1), (18)
ot (r,a)=0, vt (1,£)=0, (19)

and v! (r,t)— the solution to the problem

Lvt, =0, (20)
o, (ra)=9,(r). o), (L1)=0, (21)

The solution to the above tasks, consider in the form

0} ()= ) R(IT(e) (22)

while let

0

F00=Ya 0R0) 0= bR () @

s=1

Substituting (22) into (18), (19), taking into account (23), we obtain

ﬂ’n
R, +r_2RS +uR =0, 0<r<l1. (24)
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R (1)=0, |R(0)<oo, (25)
T +ut'T,(t)==a,,(t), 0<i<a, (26)
T,(a)=0. 27)
A limited solution to problem (24), (25) is ([6])
R(r)=r 7 (u,,r) (28)

+(m—2)

where v=nT, U= 4.

The solution to problem (26), (27) is the function

Ts,n(f)=[exp(—%t"”]}jas,n(f{exp . «:] 4 (29)

Substituting (28) in (23) we obtain

1

rRTH)= Y oW ) waJV ) 0<r<l. (30)

s=1

Series (30) are expansions in Fourier-Bessel series ([7]), if

a,,(0)=20.(u., )" I JEF (&M (£ e, (31)

b, =2, MHI (&), (1, M, (32)

where u,, s =1,2,...—the positive zeros of the Bassel functions J, (Z), are arranged in increasing order of

magnitude.
From (22), (28), (29) we obtain the solution to problem (18), (19)

vt (r,1) Z\/_ J (), (33)

where a_, (t) is determined from (31).

Further, substituting (22) into (20), (21), taking into account (23), we will have the problem

T,+ult'T =0,0<t<a, T(a)=b

s,n

which decision is
2

T Y (l‘): b exp/l‘_v‘"l(aqﬂ _tq+1) (34)

From (28), (34) we obtain

vy, (r,t) = st n\/;exp( "l ( ol _ o )}IV (,umr), (35)

where b, are from (32).
Therefore, first solving problem (9), (12) (n=0), and then (10), (12) (n=1), etc. we find
successively all v*(r,z) of (17), where v (r,z), v’ (r,t) they are determined from (33), (35).
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So, in the field Q ; takes place
j p(0)LudH =0. (36)

Let f(r,0,t)=R(r)p(O)T (1), at that R(r)eV,,V, — be dense inL,((0,1)), p(0) e C*(H), dense in
L,(H), and T(¢)eV,,V,— dense inL,((0,cx)). Then it is f(r,0,t)eV,V=V,®H®V, - dense in

L,(Q,) (8D.
From this and (36) it follows that

J‘f(r, 0,t)LudQ), =0
Q
and
Lu=0,Y(r,0,t)eQ,,.
Thus, the solution to problem (1), (2) in the domain Q  is the function

0= 3 Y [0+ bt el 0 @)

n=0 k=1

where vf (r,¢), 0! (r,t) are determined from (33), (35).
Given the formula ([7]), 2J/(z)=J,_,(z)-J..,(z) estimates ([9, 5])

/2 T T 1
JV(Z)Z ;COS(Z_EV_ZJ+0[FJ’ VZO,

m-2

k

n

<c¢n

o Yn"m(e){s%nr;’”q, j=Lm—1,q=0,L,.., (38)
00, "
as well as lemmas, restrictions on the coefficients of equation (1) and on given functions as
l//l(t,H), go(r,H), in [10], we can prove that the resulting solution (37) belongs to the class
c@,)nc'(@,us)nc(@,)

Further, from (33), (35), (37) for t > +0 we have

(rHO r@ ZZ T nm

n=0 k=l

= o) P P
()=vi 0+ r jas, (r:)[exp r:‘f“jd@b [ ﬁaﬂJ()(ﬂ) (39)
s—1 0 2
u (r,0,0)=v(r,0)= ZZ (8), (40)

2y (2om)
Vi) =wi,0)-D r * a0 ).

n+
s=1 2

From (31) - (33), (38), as well as the lemmas, it follows that z(r,8), v(r,0) e W} (S), I > 37171
Thus, taking into account the boundary conditions (3), (39), (40) in the domain €, we arrive at the
mixed problem for degenerate hyperbolic equations

m

L=l Au—u,+ Zai (r,0,0u, +b(r,0,00u, + c(r,0,t)u =0 (41)
i=1
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with data
u|s =7(r,0), u,|s =v(r,0), ”|r,; =y,(1,0). (42)

The following theorem was proved in [4]
Theorem 2. If (r,0), v(r,0)e W/ (S), v,(t,0)e W, (F l l> then problem (41), (42) has a

unique solution if condition (5) is satisfied.

Further, using Theorem 2, we arrive at the solvability of Problem 1.

item 4. Uniqueness of the solution to Problem 1. First we consider the problem (1), (2) in the
domain Q_ and prove its uniqueness to the solution. For this, we construct a solution to the first boundary

value problem for the equation
Lo=t'Av-v, - ZdiUX; +dv=0, (6)

with data &
(r,0)= ZZ (Y, 0) o], =0, 43)

where d(x,t)=e— Zdix , 7. (r)e G, G- many functions z(r) from the class C([0,1])"C'((0,1)).

Scores G are dense everywhere in L, ((0,1))([8]) . Solution of the problem (6 *). (43) we will search in the
form (7), where the functions 0 (r,z) will be defined below. Then, similarly to item 2, the functions
_k(r t) satisfy a system of equations of the form (9) - (10), where, respectively, dm, d! are replaced
to —d*, —d*,and e to d*,i=1,...,m k=1Lk, n=0]1,...

in?

Further, from the boundary condition (43), by virtue of (7), we arrive at the following problem

2,
k _ 4q k n o,k
Llun _t (Unrr }/_2 n

oF(r,0)=72"(r), 0 (1,¢)=0, (45)
(m-1) (m-1) (m-1)

orrt)=r 2 5/(rt). £H(r0)=r 7 M) 2y =r 7 7).

The solution to problem (44), (45) will be sought in the form of (17), where U]kn (r, t) is the solution to
the problem for equation (18) with data

= 4 (r,0) (44)

vl (,0)=0,0} (1,1)=0, (46)
a Ufn (r, l‘)— solution of the problem for equation (20) with condition

2n( ) T (r) 2n( ) 0 ’ (47)
The solutions to problem (18), (46) and (20), (47) respectively have the form

k : 2 o\ 1) oo
Uln(ret)zzﬁ[(exp[ﬁf J]_!‘as,n(f)[exp(—ﬁf Dd‘?}v(ﬂs,/),

vt (r,t)= 2 T, Jr [exp(:;j’”l ! DJ ; (,ur) ,
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where

o, =2, (us,nﬂ@r: (&) (1, E)dE, v=n +_(m2_ &

Thus, the solution of problem (6*), (43) in the form of a series

)]
o(r0.0)= D" > r * [ (i) + 0k, ()2, 6),
k=1

n=0 =
constructed, which, by virtue of estimates (38), belongs to the class C(ﬁa) NC' (ﬁa NS)NC? (ﬁa) .

VL —uL,v =—vP(u) +uP(v) —uvQ,
where

m

Plu)= tqZuxt cos(N*,x,), 0= cos(Ni,t)— Zdl. cos(N*,x,),
i=1

i=1

And N* is the internal normal to the boundary Q, , according to Green's formula, we obtain

jT(l", Au(r,0,0)ds = 0. (48)

Since the linear span of a system of functions {z_'nk (r)J " (0)} is dense in L,(S) ([8]), we conclude

n,m

from (48) that u(r,0,0) =0, V(r,0) € S . Therefore, by the extremum principle for parabolic equation
6)[12] u=0 in Q.
It follows that u,(r,8,0) =v(r,0) =0, V(r,0) €S .

Thus, we have arrived at the homogeneous mixed problem (41), (42), which, by virtue of Theorem 2,
has a trivial solution.

Consequently, the uniqueness of the solution to Problem 1 is proved.

The theorem is completely proved.

Since an explicit form of the solution to problem (41), (42) was obtained in [4], it is possible to write
an explicit representation for problem 1 as well.

The work was supported by the KazNPU science foundation (agreement No. 8 dated 05.01.2020)

C.A. Anpames, E. Kaze3

MaremMaTtuka, (hu3nka xxoHe HH)OpPMATHKA HHCTHTYTHI,
Abati ateragarel Kaz¥ITY, Anmatel, Kazakcran

BIP KJIACTATBI ABFBIHJAJIFAH KOII OJIINEM/I 'MIIEPBOJIA-ITAPABOJIAJIBIK
TEHAEYJIEP YIIHTH APAJIAC ECENTEPJIH KOPPEKTLIII'T

Anngarna. KeHicTikreri 3JeKTPOMAarHUTTIK JKa3bIKTHIH MaTeMAaTHKAIBIK MOJICIIACPIH 3ePTTEreHIe, 3JCKTpOMar-
HUTTIK NPOLIECCTIH HEri31 OHbIH KacHeTTepiMeH aHbIKTanaabl. Erep opra eTki30eiTiH 0oJica, OHAA a3FbIHJIANIFaH KOl
eINIeMIi TUepOONanblK TeHAeyiepre kenemis. Erep me opra kem eTKI3rimTi 0osica, OHJAa a3FbIHAAIFAH KOl
OJIIIeM/Ii TapaboIabIK TeHACYIepre KeATipiii.

CoHIBIKTaH, KYpAei opranapaa (MpICallbl, OTKI3€TIH OpTaa e3repMeli JACIiK) MCKTPOMArHUTTIK Ka3bIKTHIK-
Tappl 3epTTerenie 013 a3FbIHIANIFaH KOl eJIIeM/ li TUIIepOoIabIK-1apabosaiblK TEeHASYIepre KeaeMis.

ConblMeH Kartap, ['aMWIBTOH KarujachlHa CoHKec KEHICTIKTETri cepmiMai MemOpaHa TepOemicTepiHiH a3FbIH-
JTAITFaH KOl eJIIIeM/ i TUIepOOoIIabIK TeHICYIePMEH MOJENbAey MYMKIH eKeHIIr1 Oenrimi.

MaccameH TONTHIPBUIFAH OPTaJa JKbULYy Tapary MpPOLECIH 3epTTey a3FbIHIAJFaH KOl eieMIl napaboiasibik
TEHJEYJIepTe aNIbIN KEeJeTi.

CoHbIMeH cepriMi MeMOpaHaaarbl KbUTy TapaTy MPOLECIHIH MaTeMaTHKAJIBIK MOJIENbACYIH 3ePTTEeH OTHIPHIIL,
a3FBIHJANIFAH KOl eJIeMl runepoona-napadonanbik TeHaeynepre kenemis. Ocbl KOChIMIIANAP/bI OKbII YHPEHY
Ke3iH/Ie 3epTTEeNreH MaceleNIepAiH IeiMIepiH HaKThl TYPIE KOPCETY KePEKTiri TybIHAaMIbI.

— 34 ——
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ABFBIHIATFaH KOII oJIIIeMIi THIIepOoIalIbIK TEHACYIIEp YIIiH apajiac ecentep OyFaH AeHiH KapaCcTHIPBUIIH.

ABFRIHIAFaH KON ejmeMi rurnepOona-mapaboiaielK TeHACYNIep YIIH MyHAAl ecenTepiH HAKTHI IIemIiMi
TaOBLIMaraHIbIFBI OeNTTI.

Maxkanaga OipMOHII MICHIIMIIIIK KOPCETUINeH JKOHE Oip KilacTarbl a3FbIHAAIFaH KOIl eJIeMiIi rumepOoJa-
napa0oanbIK TeHAeYJIep YILIIH apaiac eCenTiH HAKThI KJIACCHKAJIBIK IIEIIIMI KeJITIPIIreH.

Tyiiin ce3nep: apanac ecer, KJIACCUKAJIBIK MICMIiM, OIpMoHAI miemiMainik, beccenb GyHKuuschl, chepanbik
(dhyHKUMSIIAp.

C.A. Anpames, E. Kaze3
Wucruryt maremaruky, pusuku u uadopmaruku, KasHITY um. Abas, Anmarsl, Kazakcran

KOPPEKTHOCTb CMEIIIAHHOM 3AJIAYH JIJIS1 OJTHOI'O KJIACCA .
BbIPOXKIAIOIUNXCA MHOI'OMEPHbBIX 'NITEPBOJIO-TAPABOJIMYECKUX YPABHEHUU

AHHOTanusl. M3BeCTHO, YTO NPH MaTEMAaTHYECKOM MOJEIHPOBAHUM 3JIEKTPOMArHUTHBIX IOJEH B IpOC-
TPaHCTBE, XapaKTep 3JIEKTPOMArHUTHOIO IpoLiecca OMpeNeNsieTcsi cBoicTBaMu cpenpl. Eciam cpena HempoBosasi,
TO IOJy4aeM BBIPOXKAAIOIINXCS MHOIOMEpHBIE ruiepOoianueckue ypaBHeHus. Ecimu xe cpema obnamaer GonbLIoi
IMPOBOAMMOCTBIO, TO IPUXOJAMM K BBIPOXKIAIOIUMCA MHOTOMEPHBIM Hapa60ﬂl/l‘leCKl/IM YpaBHCHUAM.

CrenoBarenbHO, aHAIN3 DJIEKTPOMArHUTHBIX TI0JIEH B CIIOKHBIX cpefiaX (Hanpumep, €Cii MPOBOAUMOCTD CPEIbI
MEHSIETCS) CBOJATCS K BHIPOXKIAIOIMMCS MHOTOMEPHBIM THIIEpO0IIO- MapaboIMuecKHM YPaBHEHUSIM.

W3BecTHO, TakKe 4TO KOyieOaHHWs yNPYyrux MeMOpaH B HPOCTPAHCTBE I0 NPUHIOUIY [ aMHMIbTOHAa MOKHO
MO/IETIMPOBATh BHIPOXKAAIOIIMMICS MHOTOMEPHBIMH THIIEPOOIMYECKUMH ypaBHEHHSIMH.

Wzyuenne mporecca pacpoCTpaHEHHs TEIUIa B CPEJE, 3all0JIHEHHONH MacCod, MPUBOAAT K BBIPOXKIAOIIIMCS
MHOTOMEPHBIM ITapadOINIECKHM YPaBHEHHUSM.

CrenoBarenbHO, UCCIEqysl MaTEMaTHIeCKOe MOJEIMPOBAHNE MPOLECCa PaclpOCTPaHEHHUs TeIula B KOJIeOo-
IMKXCSl yNPYrux MeMOpaHax, TakKe MPUXOAMM K BBIPOKAAIOIIMMCS MHOTOMEPHBIM THIIEpOO0IIO- MapaboInuecKum
ypaBHEHUsIM. 1Ipy M3ydeHHMH 3THX HPHIOKEHHUH, BO3HUKAET HEOOXOAMMOCTH MOTYyYEHHs SBHOTO NPEICTaBICHHS
pelIeHui nccaeyeMbIx 3a1ad.

CMenranHbIe 331244 [T BBIPOXKIAIOIIMXCSI MHOTOMEPHBIX TUIICPOOIMUYSCKIX YPAaBHEHUI paHee paCCMOTPEHBI.

Hackouibko M3BECTHO, 3TH 331241 JUIsl BHIPOXKIAIOIIUXCSI MHOTOMEPHBIX TUIIEPO0JI0- MapaboIMuecKiX ypaBHe-
HUW HE U3YYECHBI.

B nmanHoO# paboTe mokasaHa OHO3HAYHAS PA3pelIMMOCTh W IOJYYEH SIBHBIH BUJA KJIACCHYECKOTO PEICHMS
CMENIaHHOH 3aJa4uy 1JIsl OTHOTO KJIacCa BBIPOXKIAIOIINXCSI MHOTOMEPHBIX THIIEpO0IIO- TapaboInIecKiX YpaBHEHHUH.

KiroueBble ciioBa: cMeIIaHHas 33/1a4a, KJIACCHYECKOE pELIeHHe, OJHO3HAuHas pa3pelrMOCThb, (QYHKIHH
Beccerns, cheprueckue QyHKITHIA.
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