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OPTIMAL CONTROL OF POWER SYSTEMS

Abstract. This article discusses the study of problems of optimal control for electric power systems. The
numerical solution of optimal control problems for complex electric power systems using an iterative algorithm is
shown. Also considered are issues of solving the optimal control of a nonlinear system of ordinary differential
equations in two different cases. The proposed solution methods follow the principle of continuation of extremal
problems based on sufficient conditions for optimality of V. F. Krotov. A special case of optimal control problems is
considered. Numerical experiments showed sufficient efficiency of the implemented algorithms. The problem of
optimal motion control of a two-system electric power system is graphically illustrated in the proposed numerical
example.

Keywords: optimal control, electric power systems, an iterative algorithm.

1 Introduction

The industrial growth of any country largely depends on the reliability of a large interconnected
power system. The electric power system is an important form of modern energy source, since it is used in
almost all spheres of human activity for socio-economic development. In an interconnected power system,
the purpose of an electric power system's engine is to generate electrical energy in sufficient quantities at
the most appropriate place of generation, transfer it in large quantities to load centers, and then distribute it
to individual consumers in the proper order.

Mathematical model of modern electric power complex, consisting of turbo generators and complex
multiply connected power units, is a system of nonlinear ordinary differential expressions. It is known
[1-3] that this model serves as the basis of a broad and relevant class of control problem.

It should be noted that mathematical simulation of various processes and systems, including electric
power system, are closely related with problem of making the best decisions. The optimization problems,
as well as the creation of methods of building control on the principle of feedback for such systems, still
attract attention of many researchers.

Optimal control theory is based on the maximum principle of L.S. Pontryagin and the method of
dynamic programming of R. Bellman. It is known that the maximum principle reduces extreme challenge
to the decision of a special system of ordinary differential equations, and dynamic programming methods
to the solution of partial differential equations.

In many cases, the exact solution of these tasks is quite difficult. Why we developed numerical
methods for solving extreme problems [5], based on the extension principle [6-11], which differ in the
considerable variety of approaches and results.

These methods found a wide and effective application in solving some optimal control problems of
large dimension and of various complexities [12-23]. Note that our works [24-26] were also devoted to
the solution of optimal control problems. A study of global asymptotic stability was carried out in [27].

There are two widely spread areas in engineering practice among different research directions in
optimal control theory based on the method of state space. One of them combines the methods of optimal
control, which involve optimizing the system by minimizing the functional that characterizes, as a rule, the
quality of regulation [21]. The second area contains the methods of modal control, i.e. methods of forming
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feedback circuits, giving a closed-loop automatic control system (ACS), pre-selected root distribution of
the characteristic equation [28].

The need to reconfigure the values of fudge factors of industrial controllers due to several factors
associated with changes in the characteristics of complex energy facilities. Factors occur due to load
changes, properties of energy resources, work of parallel regulation channels associated with controller via
the object, equipment deterioration, impact of uncontrolled external disturbances, etc. For example, the
load change of thermal power unit causes the change of position of regulating units. Tilt of operating
characteristics of the regulating units of different types (slide, dampers, dampers, valves, etc.) may change
in 2-3 times in different positions. The gain ratio of the object changes in 2-3 times accordingly that
results in deteriorating the quality of transition processes. These degradations essentially influence the
technical-and-economic performance of the equipment by decreasing its efficiency.

Testing parameters similarly change in other technical processes of complex objects of power-supply
branch. In order to increase the effectiveness of the disturbance control and suppression processes, which
are caused by the change of equipment operation load and other performance factors, it needs to use
optimal digital control systems.

Thus, the study of modern principles of optimal control systems of complex objects is an actual
scientific-technical problem.

In this paper, solving of optimal control problems for power system uses the principle of expansion
extreme problems based on sufficient optimality conditions.

2 The optimal control formulation

It is required to minimize the functional

Jw) =05, fOT(kiin +ru?)dt + A(x(T), y(T)), (1D
under the condition:
dx; dy;
d_tl = Vi, d_tl = =AY +£(x) + biuy,
x;(0) = x40, ¥:(0) = y;0,i = 1,,t € (0,T), (2)

x(£),y(®) : (0,T) > R,

where {x;,y;}i_; — is system condition {u;}\_, — control; {f;(x)}\_,, A(x,¥) — given continuously
differentiable functions and functions
fi (x) satisfy the integrability conditions:

dfi(x) _ 0fi(x) Vi
Ox,  0x; '

* k; 3)

We consider point in time T and initial states {x;q,y;} ordered; 1;, 4;, k;, b; — positive constants;
terminal values x(T), y(T) are unknown earlier.

We should note that if we appropriately set the f;(x),i = 1, ..., [, — function, non-linear problem of
Cauchy (1)-(2) images the electric power system, for which the problem of synthesis is an important
practical task of optimal control.

Special case of the control problem (1)-(2).

Further, in the optimal control problem (1)-(2) we assume that there are following data for the control
problem:

b2 —_
ki=2/1i+—L, i€1,l.
Ti

In this case, we can solve the problem (1)-(2), following the Bellman-Krotov formalism [9,10]. At
first, we show the correctness of the next Lemma.

Lemma 1. In order that the control u(y;) = — %yi,i =1,1 and the relevant solution of system
(2)-(3) {x(t),y(t)} could be optimal, it is necessary and sufficient that
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2 -
o (x(T), y(T)) = = A (x(T), y(T)), k; = 24; +’;— ieTl (4%
L i
l
oG =05 Y v = [y [ filouwin Gt w048 @
i=1 x;=0,j>i 0

¢ (x,y) — the Bellman-Krotov function ,where
J@®) = muin](u) = _‘P(x(to), }’(to))-

Implementation of iterative algorithm for the problem (1)-(2).
Let us describe the procedure of improving a given s-order approximation

Us(t) = {xl,s(t): e xl,s(t): Y1,s(t): IYI,s(t)r rul,s(t); e ul,s(t)}-
Step 1. Let us find a solution the next dual problem

dpl ) OH (x50, 35(D), Yy 9 (xs (6, 35(0),0)
dt T axi !
il OH (x50, 35(D, Vay 9 (xs (6,350, 0))
dt - ayl yL— 1, ..,

IN(x(T), y(T AN(x(T), y(T
wi'S(T) - ();(sz};( ))’¢L+i,s(T) == (J;(sz);( )),i =

1,...,1
where
H(xs(t),ys(t), Vx,yq)(xs ®),ys(t),t) = mziix H(xs (®), ys(t), Vx,y(p(xs ®),y:(0),t),u, t):

H(x, v, Vx_ygo, u, t)

dp(x,y,t) , dp(xyt)
—— ' + .
dxt ayt

!
= —O.S[kiyl-2 + rl-uiz] + Z

i=1

[—Aiyi + fi(x) + bju;]

ﬁ(x, v, Vx’yq), t) € Arg ml’le H(x, v, Vx'y(p, u, t),

H(x, Y, Viy(9,8),8) = H(X, Y,V y 0, W(X, 7, Vi y 9, t), 1),
Ys(6) = Viy (%, ¥, D=y (0)y=ys(0)

Step 2. We solve Cauchy problem (2) at u = ﬁ(x, ViV y®, t) and find function of state
{x5+1(t), Y541 (t)} and control function

us+1(t) = u(x,y, Vx,y(ps(x: Y t), t) |x=xs(t),y=ys(t)

Thus, we find new functional approximation of control state {xs,1(t), Ys+1(t), uss1(t)}, for which
the inequality is true:

](xs+1(t)r ys+1 (t): us+1(t)) < ](xs(t)r YS(t)r us (t))

Application of iterative algorithm to solve the problem of optimal control of steam turbines’
capacity.
One of the models describing the transient processes in electrical system is the following system of
differential equations [1, 2]:
dé; ds; ) _ _
—=Si, H,— = _DiSi_Ei Yii sin a;; — Pi sin (81 —ai)—

5'21,j¢ipi]' sin (611 - aij) +ui, i € ﬁ, t e (O,T), (10)
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8ij = 6; = 6;, P, = E;UY; 11, Pij = EiE}Yyy,
where §; is an angle of rotor deflection of i -alternator towards some synchronous roll axis (roll axis of
constant voltage bus, which makes rotation at a speed of 50 rpm/sec.; S; — slip of i -alternator; H; — an
inertia constant of i-alternator; u; = P; — mechanical outputs, which fed to alternator; E; — EMF of
i-alternator; Y;; — mutual conductance of system branches i — and j; U = const is tension in constant
voltage bus; Y*n+i characterizes connection (conductivity) of I — alternator with constant voltage bus;
D; = const = 0 — mechanical dumping; a;;,a; — constant values with active resistance influence in
armature alternator circuits.

The complexity of the model’s analysis (10) is in taking account a;;, a;; = a;;,i,j = 1,1. Because
8;j = —&j;,then the model (10) is not a conservative; you cannot build a Lyapunov function for it in the
form of the first integral. The system is called positional model.

Let the state variable and control variable in the established post-emergency mode are equal to:

S;=0,6=6u=ul,i=1,L (11)
To obtain the system of perturbed motion let us pass on to equations in fluctuations, supposing that:

S; = AS;, 6, = 6F + AS,uy = uf + Ay, i = 1,1 (12)

Next, for the convenience of the variables AS;, Ad;, Au;, again symbolizing S;, §;, u; from(11) we get:

ds; ds; 1
d_tl = gi,d_t' - [—D;S; — £:(8;) — N;(8) + M;(8) + u;],

i=1Lte (0,1, (13)

where
fi(6;) = P [sin(5i + 6f - ai) - sin(df — ai)],
! l

N(8) = z Ny (81, ) 8) = Z rL[sin(8y; + 87) — sin 67,

Jj=1j#i j=1,j=#i
!
M;(6) = Z M_U(Sl, v, 0]) = F}j[cos(é‘ij + 65) — cos 65],
j=1,)#i

F:llj = PL_] COSai,FL-Zj = P” Sinai,Pij = P;;

0 T = Tfi k= 1,2,

j
The control will be searched in the form of:
u; =v; — Ml(6),l = ﬂ, (14)

where v; to be determined.
It is required to minimize the functional
1 T
JW) =]y, ..., v)) =05 Z f (wsiSZ + wyvf)dt + A(8(T), S(T)), (15)

i=19

Under the condition (13)-(14), where wy;, w,,;— positive constants of weight coefficients;

fi(6;) — 2m continuously differentiable periodic function; Ni(S)~ 2mm- continuously differentiable
periodic function towards &;;; for N;(8) the condition of the integrability of the type (3) is accomplished;
T - the duration of the transition process is considered as given. In addition, the initial conditions have
been given:

61(0) = SiO,Si(O) = SiO'i = 1, l, (16)
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Final value of the system status J,(T), S.(7) is not known in advance, they should be determined by

solving optimal control problem (13) - (16).
To solve this problem for electric power systems used Krotov theorem on sufficient optimality
conditions [1,2]. As a result, we obtain the following theorem.

Lemma 2. Tn order to manage v = — %, i = 1,1 and the relevant decision {6°,5°} systems (13) to

be optimum, it is also necessary and enough that

A(8(T),S(T)) = —(p(6(T) S(T)),ws; = 2D; + — LN 0,i=1,1,

Vl

1 S
<p(6.5)=o.sz HiS? + f FOOAS [+ Y [ Wbt 6B, 0,
i=1 0 i=1, o
§j=0,j>i

where ¢ — Bellman-Krotov's function, besides,
J%) = minj(v) = —¢(8°,5°)
v

In conditions of lemma 2 assumptions (8) from lemma 1 take the form of:

@S; ,
P5iS; = TL [fi(6) + N;(8)],  T.e @5, =H;Si, 05, = fi(6) + Ni(8),i =1, L
l

3 Numerical example. The optimal motion control of two-unit electric power system.

In the system (10) we take ,i = 1,2, and assume that the mechanical damping is not available, i.e. the
coefficients Dq, D, are equal to zero. According to the values (10)-(16), the optimal control problem takes
the form of [3]:

i=1

2 T
J@) = J(uy,uy) = 0.5 Z f(105i2 +0.1v7)dt + 0.5(8%(T), S*(T)), a7)
0

ds; ds; 1
_— Si’ =
dt dt H

where f;(6;) = P; [sin(é‘l- +68F —a;) —sin(6F — ai)],i =1,2,
N1 (8) = T'y[sin(8y; + &f;) — sin 81, ],
M;(8) = T'y[cos(8;, + 6F5) — cos 8F,],

F _ oF F _
612 —_ 61 - 61 ) Fl —_ Plz COoS alz,
[y = Py sinayy, 812 = 61 — 62,851 = =612

—[—£fi(6;)) = N; (&) +v;],i =12 (18)

Numerics of the system (30):

a, az Hy H, Py P, Py, 51F 55 d12

-0,052 | -0,104 2135 1256 0,85 0,69 0,9 0,827 0,828 | -0,078

and initial data:
6,(0) = 0.18; 6,(0) = 0.1; S;(0) = 0.001; S,(0) = 0.002

The results are shown in figures 1 and 2. Herewith, the value of a functional (17) has been reduced to
the value = 0,006865.

/“\_\\-:.//____"__-___‘_‘_‘_ﬂ

vvvvv

Figure 1 - Functions d1, 32 with control, Figure 2 - Functions Si1, Sz with control
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We use the 4-th order Adams-Bashford, Adams-Moulton and Runge-Kutta methods for more accurate
results.
Adams-Bashford (A-B) method:

h 251
Yova = Vues +£(55f(tn+3’yn+3)_ng(tn+2’yn+2)+37f(tn+1’yn+1)_9f(tn’yn))’ %hs(n)
Adams—Moulton (A-M) method:
h 19
Yira = Va3 +ﬂ(gf(tn+4’yn+4)+19f(tn+3’yn+3)_Sf(tn+2’yn+2)+ f(tn+1’yn+1))7_ﬁh5(n)'

Runge-Kutta (R-K) method:
Vo1 =Vat Z(kl + 2k, + 2ks + ky )

Comparison of the used methods is shown below:

Figure 3 — methods of A-B (line - - -), A-M (line * **) of the 4-th order
a) time change of S; b) time change of &

a) b)
Figure 4 — methods of A-B (line- - -), A-M (line * * *) and Euler (line -) of the 4-th order
a) time change of S; b) time change of &
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Figure 5 — methods of R-K (line - - -) and Euler (line -) of the 4-th order
a) time change of S; b) time change of &
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a) b)
Figure 6 — methods of A-B (line - - -), A-M (line * * *) and R-K (line-) of the 4-th order
a) time change of S; 6) time change of &
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According to the obtained results it is clear that the increase of more than 4 is not necessary, as they
equally converge to zero.

For this task the Adams-Bashford and Runge-Kutta methods converge to zero faster than when using
the method of Adams-Moulton. It allows to reduce time and speed up the process of determining
emergency situation. Since the Adams-Moulton method is implicit and requires the solution of the
"historical" values, which takes computation time.

Conclusions

The paper deals with solution of optimal control of nonlinear system of ordinary differential equations
in two different cases. The studied model, in particular, describes management processes in electric power
systems. The proposed methods for solving hold to the extreme tasks expansion principle, based on
sufficient optimality conditions of V.F. Krotov. The numerical experiments have shown sufficient efficacy
implemented algorithms.
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M. H. Kanaumoagaes, M.T. I:xenaaueB, A.A. Adnungaesa, T.K. ’Kykadaea, M.A. AXMeT:KaHOB
AXnaparThIK )KOHE ecenTeyill TeXHOIOrusiap HHCTUTYThI, AnMatsl, Ka3akcran
SJEKTP SHEPTETHKAJIBIK )KYWEJIEPAI OHTAJIbI BACKAPY

AHHOTanmsi. 3epTTeyNiH ©3eKTUII KypAeli 3JIEKTP-SHEPreTHKAJIbIK KEeIIeHJEPAiH >KaHAPTHUIybIHA J>KOHE
JMHAMHKACBIH 3epTTeyre HerizaenreH. VHycTpuanabl KOFaMHBIH 3aMaHayd AaMybl KyaTThl 3JIEKTP-3HEPTr e THKaJIbIK
KeIIeHIePIiH KYPbUTYybIH alKbIHIAI, IIEKTP-YHEPTUSACHIHBIH TYPAKThI XKOHE Y31JIICCI3 apTybIH KAMTaMachl3 €Te/i.

TypOorenepaTopiapaplH 0ackiM KOMIIUTIr JKOHE JKHi OaWIaHBICTHI YHEPTETUKANBIK OOBEKTUIepIi KaMTUTBHIH
KYpIENi 3JeKTP-3HEPTreTHKAIBIK KYHeIepaiH >KYMBICHIHBIH OPHBIKTBUIBIFEI MEH KayilCi3AiriH KaMTaMacChl3 €Ty
YKOHE THIMII OacKapy MacelenepiH 3epTTeYAiH 63eKTUIIr MEH MPaKTUKAJIBIK KYHIBUTBIFBIHBIH MaHBI3HI 30D.

TypOoreHepatopiap MeH KypJeni Typlle ThIFbI3 OaliIaHBICThl YHEPTETHUKANBIK OJIOKTapAaH TYPaThIH 3aMaHayH
QIIEKTP-OHEPTETUKANBIK ~KEIICHHIH MaTeMaTUKAIbIK MOJAENi KapamailbiM  audGepeHIMsUIAbIK  TeHACYIepAiH
CBI3BIKCHI3 XKYHECiH Kypaiibl.

Tuimni Gackapy Teopusicel JI.C.IIopTHATMHHIH MakcMMyM HpuHIMII MeH P. BeuiMaHHBIH JIMHAMUKAIBIK
Oarnapiamanay opiciHe Herizzeneni. MakCUMyM NPHHIMIT SKCTPEMaIbAbl €CeNTi KapamaibiM 1uddepeHmanipK
TEHACYJIEPIIH apHANBl KXYWECIHIH IIENIMiHe JKeJlce, ajl JAMHAMHKAIBIK OaFmapiamanay OJiCi eKe TYBIHIBUIBIK
ecenTiH memimMin tabaTeHbl Oenrimi. KenTereH jkarpaiinapna Oyl ecenTepAiH HAaKThl IIEIIiMIH TalOy ETKUTIKTI
IEHTeUIe KUbIH.

By makanmajga a51eKTp 3HEpPreTHKalbIK JKyHenepi OHTaiimbsl Oackapy MacenenepiH 3epTTey KapacThIPBUIFaH.
NTepanusiiblk anropuTMIl KOJNJaHa OTBIPBIN, KYPIEIN 3JIEKTp SHEPreTHKAIbIK KyHesepiH OacKapyIblH OHTAiIbI
€CEeNTEPiHiH CaHJBIK ImentimMi kepcerinreH. Exi Typni skarmaiima kapamaiibiM muddepeHIuanaplK TeHISYIepIiH
CBI3BIKTHI €MeC KYHECIH OHTaWIbI 0acKapy bl STy MoceIeepi KapaCThIphlIaaAbl. ¥ ChIHBUIFAH menty dictepi B.O.
KpoTOBTBIH OHTaiIBI OOMYBI YIIIH JKETKIJIKTI JKaFqaiiapra HETi3AeITeH dKCTPpEeMasbl MAOCceeNepAl KaIFacThIpy
KaruaachlH ycranaapl. OHTalIbl 0acKapy MacelellepiHiH epeKile jKaraalibl KapacThipbliaasl. CaHIbIK TOKIpHOenep
OpPBIHIAIIFAH aJTOPUTMIAEPIIH THIMAUIIIH KepceTTi. ¥YCBIHBUIFAH CaHIBIK MbICAJJa €Ki IKyHem JIeKTp
SHEPIUSCHIHBIH OHTAMIIBI KO3FAIBICHIH OacKapy Maceneci rpaduKaibiK TYpAe KOpCeTireH.

Tyiiin ce3mep: oHTalIbl Oackapy, 3JEKTP SHEPreTUKAIIBIK JKYHenep, UTEpalMsIIbIK aITOPHTM.

M. H. Kanumosgaes, M.T. J:xkenanues, A.A. Adnunaaesa, T.K. /KykadaeBa, M.A. AXxMeT:KaHOB
"MucTUTYT MEOPMAMOHHBIX U BEMUCIATEIBHBIX TEXHOIOTHY, AnMatsl, Kazaxcran
OIITUMAJIBHOE YIIPABJIEHUE 3JIEKTPOOHEPTETUYECKUMHU CUCTEMAMMU

AHHOTanMsl. AKTYaJlbHOCTh MCCIIEAOBaHUS 00YyCIIOBIIEHa HEOOXOIUMOCTBIO MOJIEPHHU3ALMH U MCCIIEIOBaHUS
JMHAMHKH CJIOXHBIX AJIEKTPOIHEPreTHYeCKUX KoMIuieKkcoB. COBpEMEHHOE Pa3BUTHE MHAYCTPUAILHOIO oOlecTBa

TpeOyeT MOCTOSHHOIO W HEMPEPHIBHOTO pOCTa IMPOM3BOJCTBA BIICKTPOIHEPTUH, Ui OOCCIECUCHHS KOTOPOH
CO3AI0TCS] MOLIHBIE AJIEKTPOIHEPTETUUECKIE KOMILJIEKCHI.

—— 9) ——
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Oco0y10 aKkTyaJbHOCTh U NMPAKTHYECKOE 3HAUYCHUE IIPEACTABIIAIOT HUCCIIENOBAHUS ONTHMAJIBHOTO YIIPaBICHHUS,
obecriedeHHs1 GE30IIACHOCTH M yCTOMYMBOCTH PabOTHI CIOXKHBIX DIEKTPOIHEPreTHYECKHX CHCTEM, COCTOSAIINX W3
OoubIIoro ynciia TypOOreHepaTOpOB U MHOT'OCBSI3HBIX SHEPI€THYECKUX 0OBEKTOB.

MaremaTtnyeckass MOJIEJb COBPEMEHHOH SHEPreTHMYeCKOi YCTAaHOBKH, COCTOsIIEH M3 TypOOreHepaTtopoB M
CJIOJKHO CBSI3aHHBIX 3HEPTrOOJIOKOB, 00pa3yeT HEJIMHEHHYIO0 CHCTEMY NMPOCTHIX AU BepeHINaIbHBIX YPAaBHEHHH.

Teopust >ddexTuBHOTO yrpaBiaeHus ocHoBaHa Ha npuHunune makcumyma JI. C. IloprHsrmHa u merona
JUHAMHYECKOro NporpaMMupoBaHus bemMana. M3BeCTHO, YTO NPHHIMI MakKCHMyMa IIPHUBOAMT K PEIICHUIO
OKCTPEMAIILHOM 3afayd K CHEUHalbHOM CHCTEME NPOCTHIX AU(QQEepeHIUaNbHBIX YpPaBHEHUH, a MeTo[
JUHAMHYECKOI0 MPOrPaMMHPOBAaHMS NMPUBOAUT K PEIICHHIO MHIMBHAYAJIbHOHM 3amadd O NpomykTe. Bo MHOrmx
CIIy4asx IOBOJBHO CJI0KHO HAWTH TOYHOE PEeLIeHHE STHX IPOOIIeM.

B naHHOW cTaThe paccMaTpPUBAIOTCA BONPOCH HCCIECHOBAHUS ONTHMAIbHOIO YHPABICHHS BIIEKTPOIHEp-
TeTHYeCKMMH CcUCTeMaMH. I[loKa3aHO YHCIEHHOE peIleHHE 3alad ONTHMAJbHOI'O YIPABICHHS CIOXHBIMH
3NEKTPOIHEPreTHUECKUMU CHCTEMaMH C HCIOJIB30BAaHUEM HTEPAlMOHHOTO AJIrOpHTMa. Tarke paccMaTpPHBAIOTCS
BOIIPOCH PEIICHHS ONTHMAJIBGHOTO YHPaBIE€HHWs HENMHEHHOH CHCTeMOH OOBIKHOBEHHBIX u((hepeHInaabHbIX
ypaBHeHI/II‘/’l B JIBYX pa3HbIX Clly4dasx. Hpeﬂnomeﬂﬂme METOABI PCHICHUA CJICAYIOT MNPUHOUILY MTPOAOJIKCHUA
9KCTPEMAJIbHBIX 3a]a4 Ha OCHOBE JOCTaTOYHBIX ycioBHM ontumansHocTH B. @. KportoBa. PaccmorpeH dacTHBII
cilyyail 3a/lau ONTHUMAJIBHOTO yNpaBieHUs. UMCIIEHHbIE SKCHEPUMEHTHI MMOKa3ajld JOCTaTOYHYI 3(PQEeKTUBHOCTh
pealM30BaHHBIX  aNrOPUTMOB.  3ajada  ONTHMAIbHOTO  YNPABJICHHWS  JBIDKCHHEM  JIByXCHCTEMHOH
IIEKTPOIHEPTETUIECKON CUCTEMBI IpaIuecKy IPOMILIIOCTPUPOBAHA HA MPEJIaraeMOM YHCIICHHOM TIpHMeEpe.

KaioueBble c10Ba: ONTUMANTBHOE YIPABICHHE, YJICKTPOIHEPTETHYESCKUE CUCTEMBI, HTEPALIOHHBIA alITOPHTM.
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