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SOLITON DEFORMATION OF INVERTED CATENOID

Abstract. The minimal surface (see [1]) is determined using the Weierstrass representation in three-dimensional
space. The solution of the Dirac equation [2] in terms of spinors coincides with the representations of this surface
with conservation of isothermal coordinates. The equation represented through the Dirac operator, which is included
in the Manakov’s L, A, B triple [3] as equivalent to the modified Veselov-Novikov equation (mVN) [4]. The
potential U of the Dirac operator is the potential of representing a minimal surface. New solutions of the mVN
equation are constructed using the pre-known potentials of the Dirac operator and this algorithm is said to be
Moutard transformations [5]. Firstly, the geometric meaning of these transformations which found in [6], [7], gives
us the definition of the inversion of the minimal surface, further after finding the exact solutions of the mVN
equation, we can represent the inverted surfaces. And these representations of the new potential determine the soliton
deformation [8], [9]. In 2014, blowing-up solutions to the mVN equation were obtained using a rigid translation of
the initial Enneper surface in [6]. Further results were obtained for the second-order Enneper surface [10]. Now the
soliton deformation of an inverted catenoid is found by smooth translation along the second coordinate axis.

In this paper, in order to determine catenoid inversions, it is proposed to find holomorphic objects as Gauss
maps and height differential [11]; the soliton deformation of the inverted catenoid is obtained; particular solution of
modified Karteweg-de Vries (KdV) equation is found that give some representation of KdV surface [12],[13].

Keywords: Modified Veselov-Novikov equation, Dirac operator, Gauss maps, height differential, stereographic
projection, soliton deformation, Moutard transformations, catenoid.

1. Preliminaries. The minimal surface (see [1]) is determined using the Weierstrass representation in
three-dimensional space. The introduction to this representation is proposed in the following lemma:
Lemma 1. 1f ¢: D - C3- is a vector function that satisfies the following conditions:
1. ¢ - is holomorphic function;
2.

pi+ @3 +93=0, (1)
then there exists a minimal surface r: D — R3 for isothermal coordinates
d
¢ == (up,u,u).

The problem of constructing minimal surfaces is to find functions ¢ = (@4, @,, @3) that satisfy
equation (1). And the general solution of equation (1) is represented through some holomorphic functions
Y41, Y, in the following form:

. B . B
01 =5 W +99), 02 =5 5 — ¥D), 03 = Putha. 2)
Now it could be found all the components ul,u? u® of minimal surfaces by the Weierstrass

representations [2]. For example, catenoid 1:U — R3 constructed by the following Weierstrass
representations:

— )4 ——
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ul(x,y) = —chxsiny,

u?(x,y) = chxcosy, 3)
ud(x,y) = x.
L3
Gauss map is written in terms of ¥ = | 1, |, as well as the solution of the following Dirac equation
[2]:
Dy =0,(4)
where - are called spinors. And
3]
N
D=|_0
0z u

-Dirac operator with real-valued potential U.
Likewise the solution of the Dirac equation in terms of spinors

v=(n)

coincides with the representations of minimal surface with conservation of isothermal coordinates.
z

z
Because of this notation catenoid could be given by ¥, = \/% e 2P, = \/% ez.

The equation represented through the Dirac operator is included in the Manakov’s L, A, B triple [3],
which is equivalent (will be discussed below) to the modified Veselov-Novikov equation (mVN) [4]. The
potential of the Dirac operator is the potential of representing a minimal surface. New solutions of the
mVN equation are constructed using the pre-known potentials of the Dirac operator and this algorithm is
said to be Moutard transformations [5]. These transformations could be illustrated in the following form:

DY =0-DYPY=0
~ 3}
~ %
where D =| 9
0z

, U - real-valued function (z = x + iy).

To phrase problem statement firstly, we consider the geometric meaning of these transformations
(which found in [6],[7]) and definition of the inversion of the minimal surface; further the inverted
surfaces could be represented after finding the exact solutions of the mVN equation. And these
representations of the new potential determine the soliton deformation of inverted surfaces [8],[9].

Our problem is to analyze the soliton deformation of inverted catenoid by the following items:

1. Gauss maps, height differential;

2. Weierstrass representations;

Differential of the third coordinate is -

du® = Re(dh), Q)

where dh — is called height differential [11].
To understand the geometry of minimal surfaces, we consider the complex-analytic properties of the
Gauss map G and dh.

The Gauss map [2] is determined by the formula G(z) = % = %(ru — ir,) and by (2), (5) we obtain
G(2) = (5 W? + 93,2 @3 — vD), iy, (6)
dh = 3 (upa)dz + 5~ Gy )dz. ()
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Surfaces  constructed by Y;(zZt),P,(z7t) (will be found below) using Weierstrass
representations determine the soliton deformation of the surface s [8],[9].

It is known in [3],[4] that modified Veselov-Novikov equations (mVN) -
Up = (Upaz + 30,V +2U0,) + (Ugzz + 30,7 +207;), (8)
Vz = (U 2)2: ©)
are represented by Manakov’s L, A, B triple:
D:+[D,A]—-BD =0

where D — Dirac operator and A, B — are special differential operators represented by the following forms

([51.[6]):
. Voo 0 -U, v, 207
A=212 43(u, 0 |2+3l0 7 1243 ouv 7
9z3  9z3 z dz 0z 2\ z ’

-V 0\, Vo205 3(Vi=V 2Uz;
B=3(-20, V £+3 0 -V a_z‘+§ —2U,, V,=V;|
Usually Manakov’s L, 4, B triple was written in [5],[7] by

L +[L,A] — BL = 0,
in terms of operator

0 1
and Dirac operator given above D = L - T, where ' = (—1 0 )

So operators A, B obtained by the following formulas [3], [7]:
A =-TAl'B =TATl' + A + B.

If U,V depend on variables x, y, then mVN equations (8),(9) can be rewritten in the following form:
Ur = Upax = 3UsUyy + U, (V + D) + 200+ T) + 20,7 - V) + 205, - 1), (10)
Ve — (Uz)x = _i(Vy + (Uz)y)- (11)

lzbl _JZ
Let U,V pre-known solutions of mVN equations (8),(9) and ¥, = ¥, @1 satisfy the following

system:
{D"IJO = O,
l'p()t = c/q,lpo

Last system lead to the system of linear equations is the following Airy type equations (G.Airy) for
pre-known U = V = 0 solutions:

W1 _ Y1 9y _ 0%,

at az3 ' ot az%’ (12)

with initial data

ﬁl NINI

1(22,0) = 2, 1,(2,7,0) = (13)
—— 0 ——
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By the successive approximation methods [14], the following solutions of problem (12), (13) are
found:

z t z t
e

2'8
ol

e

_ 28 _
V1(2,2,0) =—,92(z,2,t) =
which also satisfy the Dirac equations (U =V = 0):

oYy _ 0P, _

0z 0z
Inversion for minimal surfaces is obtained by new surface ¥ constructed by ¥,(z, Z,t), ¥, (2, Z, t)
with conservation of isothermal coordinates, and in order to analyze the deformation of this surface, will
be found the solution of the Dirac equation by the Moutard transformations [5].

These transformations are also called the Darboux transformations for finding solutions of the
following modified Veselov-Novikov equation (mVN):

~ ~ ~ ~ 3 ~~ ~ = 3 ~=
O = (Upas + 30,7 +207,) + (Uzzz + 30,7 +207;), (14)
where
V= (0%),) (15)
Note that solutions of mVN equations will be found in variables x, y, therefore

U = U = 30,0y + 307 + V) +30(% + ) + 50,07 = 1)+ 30(F, = 1,), (16)

I-/-x - (Uz)x = _i(‘?y + (ﬁz)y) (17)
Now, in accordance with 1 — 1) following surfaces are constructed by § — S, [6]:
x —ie" chx
S(x,y) = —ie " Ychx —ix , (18)
where the initial points on uj = u§ = 0,u = 1,
iu3 —u! — ju? Uk
Se(oy, ) = ut —iu? —iud —ify |k —1)dv, (19)

where
k(Z; z, f) = 1/1%,2 - ¢§_z - 2(1/J11/11,zz - lpzlpz,ﬁ)'
I(z,z,t) = 1/11,z$2,2 + al_ng,f - l/’1,zz$2 - 1/11$2,ZZ - alﬁlpz - Jllpz,ﬁ'

will give some deformation of surface S.
For the inverted catenoid S, corresponds one of nontrivial solutions U of the mVN equations (16),
(17).
2. Inverted catenoid. If the surface ¥: U — R® is minimal (for example, catenoid), then its inversion
Y =T - 1. Accordingly, the inversion of surface S (which passes through points u, = (0,1,0) with zero
potential) is the following mapping:
-1. _x
ST hix - NE
which transfer the catenoid to the surface S; at some time t = const at a point x = 0,y = 0 with
potential U.
In the following examples, for given minimal surfaces, their inversions are constructed by the
Weierstrass representations (for surfaces 1),the Gauss map (6), and the height differential (7).
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Example 1. (Enneper surface) Y, = z,¢, = 1,

z
7=(1)
By Weierstrass representations, we find the following components of this surface:

5 3
ul(z,2) = f((oz'bz)) (z? +1)dz— (Z2 + 1)dz = y? —x%y -y,

20, 7 — (@2 2 N _ x* 2
u (z,z)—f(oo) (1—z)dz+(1—z)dz—C—x—?+xy -C,

ud(z,2) = f((OZ"OZ_)) zdz + zdZ = x? — y?,

here linear integrals do not depend on the integration path in the domain D, C > 0 -some constant.
Gauss map
G(z2)=((z%+11-22%2)

depends on the choice of the initial point of the surface.

Stereographic projection is the mapping of a single sphere into a complex plane. In this example, the
line that intersects the pole of the unit sphere and any other point of this sphere will be parallel to the
complex plane, since the inverted Enneper surface 1) translates the point x = y = 0,t = C to oo. In [6]
were found blowing-up solutions of the mVN equation by rigid translation of the second coordinate axis
of the initial Enneper surface 1. Obviously, dh = dz means there is no surface rotation.

z

Example 2.(catenoid) ¥, = %e_i, Y, = %ei.
ul(z,2) = é ((OZ,;)Z_)) (ez_ze_z dz — ez_ze_z dZ) = —chx siny,
u?(z,2) = % ((OZ';)Z_)) (ezze_z dz + ez+ze_z dz‘) = chx cosy,

3(, 7 = (@D (1 1,2\
u3(z,2) = f(o,o) (Zdz+2dz) = x.

Inverted catenoid as solutions of equations (12)

z t 7t
¢!¢1(Z.Z,t)=eﬁ @z =20

also determined by Weierstrass representations
1z 7¢) = — ) i
u(z,z,t) = —ch (x + 4) siny,
2(, 5 +) — 5. —cht
u(z,z,t) = ch (x + 4) cosy ch4 +1,
u3(z,z,t) = x.
Gauss map
1
G(z) = (sh z,chz, E)’
depends on the choice of the initial point of the surface, and
dh = 0.

The stereographic projection maps each point of the unit sphere to the all point of the complex plane.
It means that solutions of the mVN equation U(x,y,t) are determined for all constants t = const, by
smooth translation of the initial catenoid 1 along the second coordinate axis u? = u? + t.

3. Soliton deformation of inverted catenoid. By substituting in (19), deformation part of surface S is
found by the following time dynamics:

k :ie‘iysh(x+£),l = —%.
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Surface
iCx +2) —ieYch(x +7)

Se=| —teWeh(x+2) —i(x+2)

is constructed by is constructed by S at some time t = const:

const
4

ul(x,y) = —ch(x + )siny,
const

%) cosy, (20)

const
4

u?(x,y) = ch (x +

ud(x,y) =x+

const
4

const

with initial point uy = 0,u¢ = ch U =

iud —ul —ju?

Soliton deformation at the surface S(x,y) = (ul —iu? —iu3 >, is determined by formulas (19).

In [6], it was shown that the following surface:

Uk
St(xry't) =5(x'}’)_if0 <k —l)dT

will give soliton deformation of the surface S by the Moutard transformations [5],[6].
We present the algorithm of Moutard transformations for surface S;, obtained in [5],[6].
By this algorithm, we find W, A, B, C by introducing (see [6]) the following notation:

iw A B C
K(%)=<—Z —iW),M(‘PO)=<—E §>.

og=w, 21
V=A42+2(AB —iCW). (22)
(const + 1)cosy + (x + %)sh(x + i) —ch(x+ i)

w = ,
(const + 1)2 — 2(const + 1)cosy - ch(x + i) +(x+ %)2 + ch?(x + i)

(const+ 1) - (cosy - sh(x + £) + isiny - ch(x + £)) —sh(x + £)ch(x + £) A 2)
A=i- 4 4 4 4 4

(const + 1)2 — 2(const + 1)cosy - ch(x + i) +(x+ %)2 + ch?(x + i)
B=-t thx+be=—t

= —_—— X —-), = .

2 4 2- ch(x+£)

Then, by formulas (21), (22), we finally obtain solutions of the mVN equations (16, 17) for the
inverted catenoid u? - u? — const

U(z,zt) =
zZ—Z zZ+Z 3t z+Z t z+Zz t
(const + DED + B2+ Dsh(E2+5) — ch(E2 +9)

- (const + 1)2 — 2(const + 1)(

zZ+Z
2

4z L5 ch(ZZ2 3ty2 22tz ¢t
2+ Y chED + EZ+ 352+ cn2 B2+
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or
U(x,y,t) =

(const + 1)cosy + (x + %}sh(x + i} —ch(x + i)

_ ) (23)
(const + 1)2 — 2(const + 1)cosy - ch(x + i) +(x+ %)2 + ch?(x + i)
~ th?(x +5)
V(x’ y’ t) — —4 —
4
t
B th(x + Z)
2
(const + 1)(cosysh(x + i) + isinych(x + i)) —sh(x + i)ch(x + i) A %)
+ —
(const + 1)2 — 2(const + 1)cosych(x + i) + (x + %)Z + ch?(x + i)
U
_— (24)
t
ch (x + Z)

In particular, with condition x = y = 0,t = 0 new potential U = 0. So we obtain

Jif t>0,u? > u?—t,
const

~ [ = 2 2
7(0,0,t) = 0,if t =0,u® - u*,

Jift<0,u? > u? +t.
const

. . . 1 .
Therefore, deformation of the catenoid generates a smooth function - sgntat all points t except

the zero of potential U at the point x = y = 0.
It is known that the derivative of the signum is equal to the Dirac delta function.

4. Main result.

Theorem.

1. The soliton deformation is determined by the smooth translation of the catenoid Y along the second
coordinate axis u? = u?+ 1, and exact solution U,(x,t) of following modified Karteweg-de Vries

equation (mKdV) [15]: U, = %lexx + 6ﬁ1xl712,

is found
(x+%)sh(x+£) —ch(x+£)

3t t
(x+)%+ch?(x+)

Ui(x,t) = (25)

1
con

2. Inverted catenoid generates a smooth function -, Sgn tat all points t except the zero of potential

U at the pointx = y = 0 and

d _
—U(0,0,t) = o(t
dt(") const()

where §(t) is the Dirac delta function, const # 0 - nonzero constant.
The smooth translation of the catenoid 1 is also determined along the second coordinate axis u? =
u? + const until const # 0 and U(x, y,t), V(x, y, t) satisfy the mVN equations represented by (23), (24).
Proof. mKdV solution U, (x,t) is obtained by simple substituting const = —1 in potential (23).
Therefore potential U; depends on variable x. By substituting const = —1 in potential (24), we obtain
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V, (x,t), which satisfy V; = ﬁlz. This implies the well-known fact that mVN equations can be reduced to
mKdV equation. Note that potential representation of inverted catenoid satisfies mVN equations by
Moutard transformations and inverted catenoid satisfies Airy type equations. Analogically potential
representation (25) of mKdV surface satisfy mKdV equation by condition const = —1 and catenoid is
intended to initial data (11). Second part of theorem is clearly.

The obtained results can also be applied in the physical sciences by considered as [12], [13],
[16], [17].

Acknowledgments. This work was supported by the Ministry of Education and Science of
Kazakhstan under grants AP08856912.

. Kypmano6aes' 2, K. Ecmaxanosa’

'On-®apabu ategarel Kasak YarTeik Y ausepcuteTi, Anmatel, KasakcTaw;
’Cyneiiven Jlemupen aTeinars! Y ausepcutet, Kackenen, Kasakcran;
3JLH. I'ymuses ateiaaarsl Eypasus ¥nrreik Yausepeurerti, Hyp-Cynran, Kasakcran;

HWHBEPCUSAJAHTAH KATEHOU/I YIIHITH COJIMTOHABIK JE®OPMAILIUA

AnHoranusi. Muanmanas! 6er ([1] kapaHpI3) yin emmeMal KeHicTikre Befiepinrpace kepiHici apKbUIbI aHBIK-
tanaapl. CrimHop TepmuHiHne upak tenneyiniH ([2] »KyMbICBIHIAFbI) HICHIIMI H30TEPMAaIbl KOOPIUHATAIAPHI
CaKTaJIFaH OCbl MUHUMAaJIbl OET apKblIbl YChIHBbUIAABL. MaHakoBThIH L,A,B yuririne enerin upak oneparopst ([3]
EHTI3UINeH) apKbUIbl JKa3bUIaThlH TeHAey Moaubukauusuianran BecenoB-HoBukoBteiH Tenaeyine (MBH) ([4]
KapaHbI3) SKBUBAIEHTTI Oonanbl. [{upak omepatopbiHbH U MOTEHIIMANE MUHUMAIAB OCTTI YCHIHATHIH MOTEHITHAI
Ooubin TabObiIansl. JlMpak orepaTopbIHBIH Oenrimi moTeHuuanaapsl apkeuisl MBH TenaeyiHiH jkaHa memrimuepi
KYpacThIpbUIATBIH aroput™M Mytap Typaenaipyi ([5]) men aramanmel. Bipinmiinen, ocel Typnenamipyain [6], [7]
JKYMBICTApBIHIA TaOBUTFAaH T€OMETPHUSUIBIK MaFbIHACKI MUHHMAJIBI OCTTiH MHBEPCHACHIHA aHBIKTaMa Oepemi, apbl
Kapait MBH TeHzneyiHiH HaKTHI menriMaepin Tady apKbUIBI HHBEPCHSUIIaHFaH OeTTepi CUIaTTail amambi3. by skaHa
MOTEHIMAIAAPABIH  cunarramachkl [8], [9] KyMmbICTapblHAA EHTI3UIEH CONMTOHABI AeOPMALMSHBI AHBIKTANIBL.
2014 sxbutbl Oactankpl ODHHemep O€TIH KaTaH >KbUDKBITY apkpuibl MBH Tenzeyiniy Oy3ymibl menrimaepi [6]
JKYMBICBIHIA TaObLUIFaH. APl Kapai ekiHi perti JuHenep Oeti yimin [10] )KyMbICBIHIA HOTMKEIEP albiHFaH. EHl
eKIHIII KOOp-IMHATAJIBIK OCHTIH OOWBIMEH TETIC JKBUDKBITY apKbUIbl HHBEPCHUSUIAHFAH KaTEHOM]| YILIIH COJMTOHIBIK
nedopManiys aibIHAIbL.

Byn kymbIcTa KaTEHOWATBHIH MHBEPCUSACHIH aHbIKTay YyuiiH [aycc Oelineneyi, Ouwik aunddepenuuman ([11]
KapaHbl3) JereH roJoMopTbl 00BEKTUIepAl Tady YCHIHBUIAABI, COHBIMEH KaTap, MHBEPCHSIAHFaH KaTEHOWATHIH
COJIMTOHABI eOpMaIMsCHl anbIHAB; Moaudukanusianrad Kapreser-ne-Bpus tenneyinin (KnB) nepbec mremnrimi
TaOBUIIBL, all Oyi 63 keserinae KaB Oertepi Typanst cunarrama 6epemi([12],[13]).

Tyiiin ce3nep: Momndukanusnanran Becenos-HoBukoB Tenneyi, upak omepartopsl, ['aycc OeliHeneyi, Omik
nmuddepeHIman, crepeorpaduKaNbIK MPOSKINs, CONMUTOHABIK AedopMaryst, MyTap TypiaeHIipyi, KATEHOU.

1. Kypmanoaes %, K. Ecmaxanosa’

'Kasaxckuit HAUMOHANBHBIN YHUBEPCUTET UM. anb-Papabu, Anmarel, Kazaxcran;
2VuusepcureT uMm. Cynelivana Jlemuperns, Kackenen, Kasaxcran;
Bpasuiickuilt Haumonaneueiii Yuusepcurer um. JL.H. I'ymunena -Cyuran, Kazaxcran
E H v JLH. T , Hyp-C , K

COJIMTOHHAS JE®@OPMALINSI NHBEPCUPOBAHHOI'O KATEHOUJIA

AnHoTanus. MuHUMaIbHAS TTOBEPXHOCTH (cM.[1]) ompenenseTcs ¢ MOMOIIBIO MpeCcTaBIeHns Beiepmrpacca
B TPEXMEPHOM IIpocTpaHcTBe. Pemenue ypaBHeHus Jlupaka [2] B TepMHHAX CIIMHOPOB COBIAJAET C MPEACTaBIC-
HUSIMH 3TOH IIOBEPXHOCTH C COXPAHCHHEM H30TEPMHUYECKHX KOOPIAWHAT. YPaBHEHHE, MNPEACTABISIEMOE Uepe3
onepatopa Jlupaka, koropbiii Bxoautr B L,A,B Tpoiiky ManakoBa (cM.[3]), paBHOCHJIBHO MOIU(DHUIUPOBAHHOMY
ypaBHenuto BecenoBa-HoBukoBa (MBH) (cm.[4]). Ilorenmman U omepartopa [lupaka sBIsieTCsl NMOTEHLIHAIOM
MIPEICTaBICHUs MUHUMAaIbHOI moBepxHOCTH. HoBble pemeHus ypaBHeHUs MBH cTposiTCs ¢ MOMOIIBIO M3BECTHBIX
MOTEHLMAJIOB orepaTopa Jlupaka, M 3TOT AIrOPUTM Ha3bIBaeTcsi npeoOpasoBanueM Mytapa [5]. ['eomerpuueckuii
CMBICII 3TOTO IpeoOpa3oBaHuWs, HalieHHBIH B paborax [6], [7], BO-TIEPBEIX, JaeT HAM OIpPEICIICHHUEC WHBEPCUH
MUHHMMAJbHOI MOBEPXHOCTH, Jajee, ¢ HaXOXKACHUEM TOUHBIX pelleHHH ypaBHeHUs MBH, Mbl MOXeM MpeacTaBUTh
WHBEPCHPOBAHHBIC TIOBEPXHOCTH. A 3TH MPEACTABICHUS HOBOTO MOTEHIMANIA ONPENEIAIOT COMUTOHHYIO nedopma-
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U0, BBEACHHYIO B pabortax [8] u [9]. B 2014 rogy Opuim HalAeHBI pa3pyliaromue pemieHus ypaBHeHus MBH c
MTOMOIIBIO JKECTKOM TPaHCIINEeH M3HAYaIbHOM MOBEPXHOCTH DHHemepa B pabote [6]. JanmpHEWme pe3ysibTaThl
HaiineHel B pabore [10] mpu mnoBepxHOCTHM OHHemepa BTOPOro MOpsKa. Ternepb HAaXOAWUTCS COJNUTOHHAsS
nedopmanys Mpu HHBEPCUPOBAHHOTO KaTEHOW A C TOMOLIBIO TJ1aJKOW TPAHCIISIMEH BTOPO KOOPIMHATHOM OCH.

B nanHol pabote 1uisi onpejeneHus WHBEPCHH KaTEHOW/a NpeiaraeTcs HaiTH rojJoMopdHbIe 00BEKTHI Kak
orobpaxenus ["aycca n Beicokoro nuddepenmana (cM. [11]); Takxe B paboTe momydeHa coIuTOHHaAs JeopManus
WHBEPCHPOBAHHOTO KaTE€HOMJIa; HAJIEeHO YacTHOE pelleHre MoanunupoBaHHoro ypasHenust Kapresera-ne-Bpusza
(KaB), uro maet Ham mpencraBinenune o KnB-moBepxHocTsx (cm.[12],[13]).

KaroueBsie ciioBa: monuduimpoBanHoe ypaBHeHHe BecenoBa-HoBukoa, omeparop [upaka, oToOpakeHue
laycca, Bwicokmii muddepennunan, crepeorpaduueckas MPOEKIUSA, COMUTOHHAs Aedopmarus, Mmpeodpa3soBaHUe
Myrtapa, KaTeHOu/.
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