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AN ALGORITHM FOR SOLVING A BOUNDARY VALUE PROBLEM
FOR ESSENTIALLY LOADED DIFFERENTIAL EQUATIONS

Abstract. A linear boundary value problem for essentially loaded differential equations is considered. Using the
properties of essentially loaded differential we reduce the considering problem to a two-point boundary value
problem for loaded differential equations. This problem is investigated by parameterization method. We offer
algorithm for solving to boundary value problem for the system of loaded differential equations. This algorithm
includes of the numerical solving of the Cauchy problems for system of the ordinary differential equations and
solving of the linear system of algebraic equations. For numerical solving of the Cauchy problem we apply the
Runge—Kutta method of 4th order. The proposed numerical implementation is illustrated by example.
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Introduction. The mathematical description of various dynamic control processes in which the future
flow of processes depends not only on the present, but also is substantially determined by the history of
the process, is carried out using ordinary differential equations with different types of memory, also called
equations with aftereffect or loaded differential equations [1]. Loaded differential equations are used to
solve problems of long-term prediction and control of the groundwater level and soil moisture [2-4].
Various problems for loaded differential equations and methods of finding their solutions considered in
[1, 6-16].

In the present paper, a linear boundary value problem for essentially loaded differential equations is
investigated. The significance is that the loading member of the equation appear in the form of derivative
of solution at loaded point of the interval, i.e. the order of the loaded term is equal to the order of the
differential part of the equation. Presence of derivative of solution in loaded point has a strong influence
on the properties of equations.

Statement of problem.

We consider a linear boundary value problem for essentially loaded differential equations

d )
L~ A + X My (0x(8)) + K(©)%(80) + F (), t € (0,7, ()
Bx(0) + Cx(T) = d,d € R™ x € R™, )
where the (n X n)-matrices A(t), K(t), M;(t) (j = 0,1, ..., m), and n-vector-function f(t) are continuous

on [0,T], B and C are constant (n X n)- matrices, d is constant n-vector, and 0 = 8, < 6; < - < 0, <
Om+r =T, llx|l = max|x;].

Let C([0,T],R™) denote the space of continuous on [0,T] functions x(t) with norm

X = max [|x(t)]].
Ixlly = max (O
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A solution to problem (1), (2) is a continuously differentiable on (0, T) function x(t) € C([0,T],R™)
satisfying the essentially loaded differential equations (1) and boundary condition (2).

By setting t = 6, in equation (1), we get

[1 — K(60)]%(80) = A(80)x(0,) + XTLo M; (90)x(9j) + £ (6o). 3)
Assume that the matrix [ — K(6,)] is invertible. We obtain
x(0) = [I - K(go)]_l{A(Go)x(Go) + ZT:O Mj(eo)x(ej) + f(go)}- 4
We consider the following linear boundary value problem for loaded differential equations
& = AD)x + X Di(O)x(8) + F(8), t € (0,T), (5)
Bx(0) + Cx(T) =d,d € R",x € R", 6)
where Do(t) = Mo(t) + K(t)[I — K(80)]7'{A(8,) + Mo(6,)}

D;(t) = M;(t) + K(OII — K(60)]7'M;(8o),j = T,m,
F@) = K@®II — K017 f(6o) + f(©).

Let us consider an example showing that loads influences significantly to the property of boundary
value problem. Consider the following Cauchy problem for the loaded differential equation:

% = —ax(0.4) + f(t),t € [0,1], @)

x(0) = 1. ®)
Solving the problem (7), (8) we get

t
() =1 = —ax(0.4)t + j F@)dr.
0

The value of x(0.4) satisfies the following equation:
2 0.4
(1+2a)x(04) =1+ [} f(D)dr. 9)

But if we take @ = — g, f(t) = 1 then the equation (9) does not hold and the Cauchy problem (7), (8)

is not solved. At the same time, the Cauchy problem for a linear system of ordinary differential equations
(without loading) always has a unique solution.
On [0,1] we consider a periodic boundary value problem for an ordinary differential equation

dx
== t,x(0) = x(1),t € [0,1].

2
The General solution of the differential equation has the form: x(t) =%+ C. Substituting the

General solution in the boundary conditions for determining C, we obtain the relation: C = C + > Since

there is no such number C, the problem has no solution.
Now, adding the load at the point t = 0.5 to the right side of the differential equation we obtain the
following periodic boundary value problem for a loaded differential equation

d
d—’t‘ = ¢ +x(0.5),x(0) = x(1), ¢ € [0,1],
3t ¢t

and the solution of this problem has the form x(t) = — stT5 7

Scheme of parametrization method.

We use the approach offered in [16-21] to solve the boundary value problem (5), (6). This approach
based on the algorithms of the parameterization method and numerical methods for solving Cauchy
problems.
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Let us now investigate boundary value problem (5), (6) by the parametrization method. The interval
[0, T] is divided into subintervals by loading points:

[0,7) = UTZ[6:—1, ;).

Introduce C([0,T], 6,,, R*™*V) as a spase of systems of functions x[t] =
(1 (1), x2(t), o) Xa1 (1)), where x,.:[0,_1,6,) = R™ are continuous on [0,_4,6,) and have finite left-
sided limits lim x,.(t) forall r = 1: (m + 1), with norm ||x[-]||, = max sup ||z (O]l
t—-t,y—0 r=1,m+1te[f,_,,0;)
Let x,.(t) be the restriction of the function x(t) to the r —th interval [0,._4, 6,), i.e. x,-(t) = x(t) for
t €[60,-1,0,), r =1:(m+ 1). Then we reduce problem (5), (6) to the equivalent multipoint boundary
value problem

L = A@O)x, + X Dy(D)xi41(6;) + F(O), € € [0,-1,6,),7 = 1: (m + 1), (10)
Bx1(0) + CtliTnlome(t) =d, (11)
¢ lbm_o xs(t) = xs+1(9.s‘)'s =1L m, (12)

where (12) are conditions for matching the solution at the interior points of partition.

The solution of problem (10) - (12) is a system of functions x*[t] = (x1(t), x5(t), ..., Xm4+1(t)) €
C([0,T], O, R®™* D), where the functions x;:(t),r = 1,m + 1,are continuously differentiable on
[6,_1,6,), which satisfies system (10) and conditions (11), (12).

Problems (5), (6) and (10)-(12) are equivalent. If a system of functions ZX[t] =
(%, (), %3 (), oo\ X1 (£)) € C([0,T], Oy, R*™*+D) is a solution of problem (10)-(12), then the function
X(t) defined by the equalities X¥(t) = X,-(t), t € [6,_1,0,),r =1:(m+ 1), ¥(T) = t1>i7r"rlo Xm41(t) is a
solution of the original problem (5), (6). Conversely, if x(t) is a solution of problem (5), (6), then the
system of functions x[t] = (x1(t), x,(t), ..., Xm41(t)), where x,.(t) =x(t), t€[0,_1,6,),1r=
1:(m + 1), and tl)iTr}lO Xm+1(t) = x(T), is a solution of problem (10)-(12).

Introducing the additional parameters A, = x,.(6,_1),7 = 1: (in + 1), and performing a replacement
of the function u,(t) = x,(t) — A, on each r-th interval [6,_;,0,),r = 1:(m + 1), we obtain the
boundary value problem with parameters

du

d—tr =A®)[u, + A, ] + X% Di()Ai11 + F(D), (13)
t€6,_4,6,),r=1(m+1),

Ur(0,_1) =0,r=1L:(m+1), (14)

B/11 + C;{m+1 +C tli71;r_10 um+1(t) = d, (15)

As + . liem_0 ug(t) = Ag41,5 = Lim. (16)

A pair (u*[t],A*) with elements w*[t] = (W (), u}(t), ..., U1 (t)) € C([0,T], By, R, 2* =
A5, A%, ey Apr) € RPMMD s said to be a solution to problem (13)-(16) if the functions
uy(t),r = 1:(m + 1), are continuously differentiable on [6,_4,0,) and satisfy (13) and additional
conditions (15), (16) with 4; = /1;-, j = 1:(m + 1), and initial conditions (14).

Problems (5), (6) and (13)-(16) are equivalent. If the x*(t) is a solution of problem (5), (6), then the
pair  (u*[t],A*), where  u*[t] = (x*(t) —x*(6y),x*(t) — x*(01), ..., x*(t) —x*(6,)), and
A= (x*(09), X" (61), .., x*(6)), is a solution of problem (13)-(16). Conversely, if a pair ([t], 1) with
elements ii[t] = (iiy(t), (L), ..., Tps1(t)) € C([0,T], Oy, R*DY 1 = (A1, A, oo, Appyr) € RPOVHD),
is a solution of (13)-(16) , then the function %(t) defined by the equalities %(t) = i(t) + 4,,t €
[6,_1,0;),r = 1: (m + 1), will be the solution of the original problem (5), (6).

Using the fundamental matrix X,.(t) of differential equation % =A(t)x on t € [0,_4,0,),r =

1: (m + 1), we reduce the Cauchy problem for the system of ordinary differential equations with

— § —
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parameters (13), (14) to the equlvalent system of integral equatlons
u, (6) = X,.() f “1(DA@dT A, + X, () f ~1(7) Z Di(E)As, dr +
T 1
+XT(t) fgr_l T 1(T)F(T)dTr t E [ r—=1 ‘r')r r= 1 (m + 1) (17)

Substituting the corresponding right-hand sides of (17) into the conditions (15), (16), we obtain a
system of linear algebraic equations with respect to the parameters A4,,7r = 1: (m + 1)

m
BA + Chpyr + CXpya (T) J.Xf;l}l-l(‘[) {A(T)Am+1 + Z D; (T)Ai+1} dr =
0. i=0

= d = X () ] PaOFEE (13)

A +x(9)f 1A dr +X(95)f 1(T)2D(T)ﬂl+1d‘[—
95 1 S 1

—Agr1 = —X,(65) st-l T1(D)F(t)dr,s = 1:m. (19)

We denote the matrix corresponding to the left side of the system of equations (18), (19) by Q.(6)
and write the system in the form
Q.(6)A = F.(6),A € RMm+D) (20)

where
F.(0) = (d — CXppir (T) f;mx,;lil(r)F(r)dr, —X,(6,) fe’? X71(0)F(v)dr, ...,

~Xn(O) [y X (DF (@)

It is not difficult to establish that the solvability of the boundary value problem (5), (6) is equivalent
to the solvability of the system (20). The solution of the system (20) is a vector A* = (41,45, ..., A;,41) €
R™M+1) consists of the values of the solutions of the original problem (5), (6) in the initial points of

subintervals, i.e. A7 = x*(0,_1),r = 1: (m + 1).
Further we consider the Cauchy problems for ordinary differential equations on subintervals

7 _ a7+ P
e ’
z(0,_1) =0,t €[6,_1,6,],r=1:(m+ 1), (21)
where P(t) is either (n X n) matrix, or n vector, both continuous on [0,_4,0,],r = 1: (m + 1).
Consequently, solution to problem (21) is a square matrix or a vector of dimension n. Denote by a(P, t)
the solution to the Cauchy problem (21). Obviously,

a(P,t) = X.(t) j X-1(0)P(D)dr, t € [6,_1,6.],
Or_1

where X,.(t) is a fundamental matrix of differential equation (21) on the r-th interval.
An algorithm for solving problem (1), (2).
We offer the following numerical implementation of algorithm based on the Runge—Kutta method of

4™ order.
1.  Suppose we have a partition: 0 = 8, < 0; <

[0,-1,0,],r=1:(m+ 1), into N, parts with step h, = (6, —
[6,_1,6,] the variable O takes its discrete values:0 =6,_,, 8 = 0,_; + h,, ...,

< Oy <6y =T. Divide each r-th interval
0,_1)/N,. Assume on each interval
6= Or—1+ (N —

— 9 —
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1)h,., 0 = 6,, and denote by {6,._;, 8,} the set of such points.
2. Solving the Cauchy problems for ordinary differential equations
dz
e At)z + A(t),z(0,_1) =0,t € [6,_1,6,],
dz
i A(t)z + D;(t),z(6,_,) =0,t € [6,_1,0,],i = 0:m,
dz
i A()z+ F(t),z(0,_1) =0,t € [6,_1,0,], r=1:(m + 1),
by using again the Runge—Kutta method of 4™ order, we find the values of (n X mn) matrices
ar(A, §), ar(Di, §),i = 0:m, and n vector ar(f, §) on{0,_4,0,,r=1(m+1)

3. Construct the system of linear algebraic equations with respect to parameters
Q" (6)2 = —FP(6),2 € Rn(m+D), (22)

Solving the system (22), we find AR As noted above, the elements of AH=(AE, /f‘, ...,Aﬁm+1) are the
values of approximate solution to problem (5), (6) in the starting points of subintervals: xﬁf(er_l) =
Ay =1:(m + 1).

4. To define the values of approximate solution at the remaining points of set {6,_;, 6,-}, we solve
the Cauchy problems

dx S R
= A()x + ; Di()A}4y + F (1),

x(6y_1) =Nt € [6,_1,6,],r = 1: (m + 1).

And the solutions to Cauchy problems are found by the Runge—Kutta method of 4th order. Thus, the
algorithm allows us to find the numerical solution to the problem (5), (6).

We can see that the solution of boundary value problem (5), (6) also is the solution of boundary value
problem (1), (2), when the matrix [I — K(6,)] is invertible.

To illustrate the proposed approach for the numerical solving linear two-point boundary value
problem for essentially loaded differential equations (1), (2) on the basis of parameterization method, let
us consider the following example.

Example. We consider a linear boundary value problem for essentially loaded differential equations

dx

s A®)x + X3 M ()x(6;) + K(©)%(6p) + f(), t € (0,1), (23)
Bx(0) + Cx(T) = d,d € R?, x € R?. (24)
_ 1, 1, 3, o _(t+2 t3
Here 90—0,01—4,02—2,93—4,94—T—1,A(t)—( tz t—l)’
(6t _ (3t 5 _(t? t+3
Mo = (o 4)Mm@=(] 2)m@=(5 “F°)
_ 9 t—3 _(t*+3 5t (4 -3
M;(6) = (t2 +5 3 ) K@®) = ( 2 t — 3)’ B= (—5 —1)’
5 4 37t% 601t 1179
/9 8 , (18 T et T e
C_(—9 3)’d_(—43)’f(t)_ .5 1763 177t? 719t | 57 ’
16 64 64 64

We find x(0) from (23):

3
[1 — K(0)]x(0) = A(0)x(0) + Z M;(0)x(6;) + £(0).
i=0

— ) =——
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The matrix [/ — K(0)] is invertible. Then

@ =(T0m 0as) {A(O)xm) + Z M,(0)x(6y) + f(O)}.

We consider a linear boundary value problem for loaded differential equations

3
% = A()x + ; D;(t)x(6;) + F(t),t € (0,1),

Bx(0) + Cx(T) = d,d € R? x € R?,
where

—4t2 —10t—6  —-
Do (t) = Mo(t) + K()[I — K(0)]7{A(0) + My(0)} = 15t *

t?—2t—2 L
4 4

3t —2(2t2 + 5t +2)
Dy (1) = My (t) + KO — K(0)]7*M,(0) = *

t g2 32
4 4
2 11p 223
Dz(t)=M2(t)+K(t)[I—K(0)]‘1M2(0):< 3 2)
0 2t +2
2 2
D3(t) = M3(t) + K(O)II = K(0)]'M3(0) = | ? R
te—t—1 342242
4 4
2
. _t5+t4+5fZ; +103723t+1112789
F(©) =K@ - KO)]f(0) +f(t) = e e e )
16 64 16 64

We use the numerical implementation of algorithm. Accuracy of solution depends on the accuracy of
solving the Cauchy problem on subintervals and evaluating definite integrals. We provide the results of
the numerical implementation of algorithm by partitioning the subintervals [0, 0.25], [0.25, 0.5] , [0.5,
0.75],[0.75, 1] with step h = 0.025.

Solving the system of equations (22), we obtain the numerical values of the parameters

A = (—0.000000041) R ( 0.765624981 )
1 —2.00000002 /° "2 —2.437500012/°

N ( 1.625000009 ) N ( 2.671875034 )
3 7 \=2.750000008/" "* ~ \—-2.937500004/

We find the numerical solutions at the other points of the subintervals using Runge-Kutta method of

the 4-th order to the following Cauchy problems
dx,
dt

3
= A% + ) DO +F (D),
i=0

x(0,_1) =\t e[6,_,,0,]r=1:4

t3 +3t )

Exact solution of the problem (23), (24) is x*(t) = (t2 3
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The results of calculations of numerical solutions at the partition points are presented in the following

table:

t x,(t) %, (1) t x,(t) %,(t)

0 -0.000000041 -2.00000002 0.5 1.625000009 -2.750000008
0.025 0.075015586 -2.049375019 0.525 1.719703137 -2.774375007
0.05 0.150124963 -2.097500018 0.55 1.816375014 -2.797500007
0.075 0.22542184 -2.144375017 0.575 1.915109392 -2.819375007

0.1 0.300999967 -2.190000016 0.6 2.01600002 -2.840000006
0.125 0.376953094 -2.234375015 0.625 2.119140648 -2.859375006
0.15 0.453374971 -2.277500014 0.65 2.224625025 -2.877500006
0.175 0.530359349 -2.319375014 0.675 2.332546903 -2.894375005

0.2 0.607999976 -2.360000013 0.7 2.44300003 -2.910000005
0.225 0.686390603 -2.399375012 0.725 2.556078157 -2.924375005
0.25 0.765624981 -2.437500012 0.75 2.671875034 -2.937500004
0.275 0.845796858 -2.474375011 0.775 2.79048441 -2.949375004

0.3 0.926999986 -2.510000011 0.8 2.912000037 -2.960000004
0.325 1.009328114 -2.54437501 0.825 3.036515662 -2.969375004
0.35 1.092874991 -2.57750001 0.85 3.164125037 -2.977500004
0.375 1.177734369 -2.60937501 0.875 3.294921912 -2.984375005

0.4 1.263999997 -2.640000009 0.9 3.429000036 -2.990000005
0.425 1.351765625 -2.669375009 0.925 3.566453159 -2.994375006
0.45 1.441125003 -2.697500008 0.95 3.707375031 -2.997500007
0.475 1.532171881 -2.724375008 0.975 3.851859402 -2.999375009

0.5 1.625000009 -2.750000008 1 4.000000021 -3.000000011

For the difference of the corresponding values of the exact and constructed solutions of the problem
the following estimate is true:
*(t;) — X(t;)|| < 0.00000004.
max [l (&) — 2(t))

Conclusion. In this work, we propose a numerical implementation of parametrization method for
finding solutions to linear two-point boundary value problem for system of essentially loaded differential
equations. Using the parametrization method, we reduce the considered problem to the equivalent
boundary value problem with parameters. The example illustrating the numerical algorithms of
parametrization method are provided.
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"MareMaryka *oHe MaTeMaTHKAIIBIK MOZIENbEY MHCTUTYThI, AIIMaThl Kanacel, Kazakcran;
ZX anbIKapanblK aKIapaTThIK TEXHOJIOTHAIAD YHHBEPCHTETI, AIMAThI Kanackl, KazakcTaw;
SKasax YITTBIK KbI3ap II€1arOrHKAaNbIK yHUBEPCUTETI, AIMAThI Kanackl, KazakcTan

EJEYJI TYPIAE XKXYKTEJT'EH JUOPEPEHIHUAJIABIK TEHAEYJIEP YIITH
HIETTIK ECEIITI LHEITY AJIT'OPUTMI

AnnoTtanus. Eneyini Typae xxykrenreH auddepeHnuanaplk TeHaeyIep YIIiH ChI3bIKTHIK MIETTIK ecell KapacThl-
pbutaabl. bi3 KapacThIpbUIBINT OTBIPFAH €CENTi ejeyli TypAe KykTeireH auddepeHnnanabk TeHaey KacHeTTepiH
naiijanana OThIPKII XKYKTelIreH AudepeHnnanapK TeHIey YIIiH eKi HyKTesl MeTKI ecenTepre KenTipeMis. Atanran
ecern mapamerpiey ofici apkpuibl 3eprreneni. JKykrenren aupdepeHunanablK TeHICYyJiep JKYHeci YLIH IIeTTiK
€CENTIH IeiMiH TaOy/bIH alrOpUTMI YChIHBUIAABL. byl anroputm kol muddepeHmanapK TeHaeysep xKykeci yiin
Komm ecentepiH caHAbIK IIEIIyi »oHE alreOpaliblk TEHAEYyJep KykeciH memyni kamTuisl. Komm ecenrepin
CaHABIK TYpAE LIelly YIuiH TepTiHii perti PyHre-KyTTaHbiH ofici KonaaHbuiagsl. ¥ ChIHBUIBII OTBIPFaH CaHIBIK
JKY3ere achIpbULy MBICAJIMEH KOPHEKTENE .

Tyiiin ce3nep: exeyi Typae )KykreireH quddepeHHaNbIK TEHICY, CAHIBIK KYBIKTAJIFaH 9/IiC, aITOPHTM.
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AJITOPUTM PEHIEHUS KPAEBOM 3AJIAYM
JIJISI CYIIECTBEHHO HAT'PYKEHHBIX TU®®EPEHIIUAJIBHBIX YPABHEHUM

AnHoTanus. PaccmarpuBaercst nuHeiHas KpaeBas 3aj1ada Ul CYIIECTBEHHO HarpyXeHHbBIX AnugQepeHaib-
HBIX ypaBHEHHH. VcTionb3ys cBOICTBa CyIIECTBEHHO HArpykeHHOTO A (epeHnnaTbHOTO ypaBHEHHS, Mbl CBOANM
paccMaTpruBaeMyro 3aJady K JBYXTOUEUHOH KpaeBOW 3ajade Al HarpyXeHHbIX IU(QepeHIHanbHbIX YpPaBHEHUH.
JlaHHas 3aja4a ucciexyeTcs METOJIOM IapaMeTpusauuu. Ilpennaraercs alropuTM HaxOXICHUS PEIICHHUs KpaeBOH
3aJaull JUIA CHUCTEMBl Harpy>XKeHHBIX IU(QepeHInanbHbIX ypaBHEHUH. JlaHHBIM aaropuT™M BKIIOYAET YHCICHHOE
pemienne 3amad Komwm ais cucteMbl OOBIKHOBEHHBIX IU(QEpeHIHaNbHBIX YPaBHEHUH W pelIeHHe JHHEHHOW
cucTeMbl anredpandyeckux ypaBHeHuil. J{ns uncnenHoro peuienus 3agauu Komm npumensercs meron Pynre-Kyrra
4yeTBepToro nopsaaka. [Ipennaraemas uncieHHas peaau3anus WITIOCTPUPYETCS IPUMEPOM.

Ki1roueBble ci10Ba: CyNIeCTBEHHO Harpy)XeHHOe Au(QepeHINaIbHOe YpaBHEHUE, YUCIEHHO MPHOIMKEHHBINR
METOJI, aITOPUTM.
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