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ON INVERSE STOCHASTIC RECONSTRUCTION PROBLEM

Abstract. In this paper, general reconstruction problem in the class of second-order stochastic differential
equations of the Ito type is considered for given properties of motion, when the control is included in the drift
coefficient. And the form of control parameters is determined by the quasi-inversion method, which provides
necessary and sufficient conditions for existence of a given integral manifold. Further, the solution of the
Meshchersky’s stochastic problem is given, which is one of the inverse problems of dynamics and, according to the
well-known Galiullin’s classification, refers to the restoration problem.

It is assumed that random perturbations belong to the class of processes with independent increments. To solve
the posed problem an equation of perturbed motion is drawn up by the Ito rule of stochastic differentiation. And,
further, the Erugin method in combination with the quasi-inversion method is used to construct: 1) a set of control
vector functions and 2) a set of diffusion matrices that provide necessary and sufficient conditions for a given
second-order differential equation of Ito type to have a given integral manifold.

The linear case of a stochastic problem with drift control is considered separately. In the linear setting, in
contrast to the nonlinear formulation, the conditions of solvability in the presence of random perturbations from the
class of processes with independent increments coincide with the conditions of solvability in a similar linear case in
the presence of random perturbations from the class of independent Wiener processes. Also considered is the scalar
case of the recovery problem with drift controls.

Key Words: Ito stochastic differential equation, reconstruction problem, Meshchersky's problem, integral
manifold, quasi-inversion method.

Introductionro The theory of inverse problems of the dynamics of systems described by ordinary
differential equations [1-6, etc.] goes back to the fundamental work of Erugin [7]. In 7, a set of ordinary
differential equations is constructed that have a given integral curve. The inverse problems of constructing
automatic control systems for program motion are studied in [8-11]. It should be noted that one of the
general methods for solving inverse problems of dynamics in the class of ordinary differential equations,
namely, the quasi-inversion method was proposed in [3].

Inverse problems of dynamics in the class of partial differential equations are studied in [12-14], and
in the class of stochastic differential equations in [15-19].

1 Stochastic reconstruction problem

Let us consider the general reconstruction problem in the class of second-order Ito stochastic
differential equations by the given properties of motion, when the control is included in the drift
coefficient. And by the quasi-inversion method we define the form of control parameters that provides
necessary and sufficient conditions for the existence of a given integral manifold. Further, the solution of
Meshchersky's stochastic problem is given, which is one of the inverse problems of dynamics and it
belongs to reconstruction problem according to the well-known Galiullin’s classification of [1].
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1.1 Problem statement. Let us consider the second-order Ito stochastic differential equation
X = f(x,x,t)+ D(x,x,t)u +0o(x,x,t)E. (1.1)

It is required to determine the vector-function u# = u(x,x,t) € R" included in the drift coefficient for
the given integral manifold

A@t): A(x,x,0)=0, A=Ax,x,t)eC”!

xxt>

AeR", (1.2)

here C)lcilt is set of y(x,x,?) functions, which are continuously differentiable with respect to x and ¢
and twice continuously differentiable with respect to x .

In other words, for the given f, D, o and A, the control u# should be defined so that the set (1.2) is

the integral set of equation (1.1).
It is assumed that the functions f(x,x,t), D(x,x,t), o(x,x,t), included in the above equation,

have the smoothness necessary for further reasoning and satisfy the existence and uniqueness theorem up

to stochastic equivalence of the solution (x(t)T,)'c(t)T)T of (1.1) with the initial condition

(x(tO)T , )'C(IO)T)T = (xOT , )'COT )T, which is continuous strictly Markov process with probability 1 [20].
Here {§;(f,®),...,E;(t,)} is a system of random processes with independent increments, which,

following [19], can be represented as a sum & =& + Ic( Y)P°(t,dy) of processes Wiener process &, and

Poisson process P°. P°(t, dy) is the number of process PY jumps in the interval [0, t] that fall on the set

dy; c(y) is a vector function that maps space R 27 into the space R¥ of values of process &(t) for any
t.

This problem is one of the inverse problems of dynamics, and in the absence of random perturbations
(6=0) it has been sufficiently fully investigated in [1-6], and the case o #0 and

{&(t,®),...,E; (t,®)} is a system of independent Wiener processes, as a particular form of processes

with independent increments, is considered in [21].
In this paper, the quasi-inversion method is used to solve the stochastic recovery problem [3, p. 12].
By Ito rule of stochastic differentiation [20, p.204] for solving the posed problem the equation of
perturbed motion

. 04 OA oA oA oA .
A=—+—x+—f+—Du+—0cé;+ S5 +8,+8S,, 1.4
o o T a Ve 5 T RS (9
2 . ) oA .
is compiled. Here S, = l% coo’; Sy = j[/i(x,x +oc(y),t)— A(x,x,t) ——oxc(y)]dy;
2 Ox ox
i 10°2
S, :j[/”t(x,)'c+O'c(y),t)—/l(x,)'c,t)]PO(t,dy). Following [20], EEZD is a vector whose

elements are the traces of the products of the matrices of the second derivatives of the corresponding
elements A (x,x,7) of the vector A(x,x,7) with respect to components X by the matrix D

_ 5 _
tr 0 MD
) ox?
% D = : ,DzGGT.
ox
2
tr 0 ksz
Oox
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We introduce arbitrary Erugin functions [1]: an m-dimensional vector function 4 and a (mxk)-
matrix B, with the properties A4(0, x, x,¢) =0, B(0,x,x,¢) =0, such that
A=A, x,x%,6)+ B(A,x,%,1)E, (1.5)
takes place. Here & is the same process with independent increments included in (1.1) and
represented as a sum of Wiener process and Poisson process [20]:
=&+ [c(P(t,dy) or &= & +[c()P°(t,dy).

Based on equations (1.4) and (1.5), we obtain the relations

oA oL 04

P pu=a-L Ly g — S, 1.6
ox o x4 f 1~ 3 (1.6)
o, _B, (1.7)
ox

from which you need to determine the control u and the matrix ¢ . To solve the problem, you need
the following lemma.
Lemma 1[3, p.12-13]. The set of all solutions of a linear system

HS =g, H:(hyv), 3=03), g=(gu) u=Lm, v=1n m<n, (1.8)
is determined by the expression
9=s[HC|]+H"g. (1.9)

Here H is matrix has rank m. s is arbitrary scalar, [H C]:[hl...hm c -Cn-1] is the cross

m+l
- 1
product of vectors 4, =(hﬂv) and ¢, =(cpy), p=m+Ln-1; H :HT(HHTT , HT s the

matrix transposed to H.
Denoting, by formula (1.9) of Lemma 1 from relations (1.6), (1.7), we define the required vector -
function and columns, matrices in the form:

~ 04
Denoting D = ?D , by formula (1.9) from (1.6), (1.7) we define the required vector — function u
X

and columns o;, i = I,_k of o in the form :

~ oL OA
=g51|DC |+ A————x—— S1-8, -85, 1.10
Msl[ ]()( 5 o xf 1—52 3) (1.10)
O'i:sz{a—%C}+(%j B;, i=lk. (1.11)

ox ox

Therefore, the following theorem is true.
Theorem 1.1 A necessary and sufficient condition that second-order Ito differential equation (1.1) has

a given integral manifold (1.2) is that the control function # has the form (1.10) and the columns o; of
diffusion matrix ¢ have the form (1.11).
Remark 1.1 If ¢(y)=0, then S, =53 =0 and a solution of this problem coincides with the

solution of the reconstruction problem previously considered in [21] in the presence of random
perturbations from the class of independent Wiener processes.

Remark 1.2 For m = n, formula (1.9) takes the form = H -1 g, since in this case, the first term of
the formula as a cross product of n vectors in #—dimensional space identically equals to zero

[H C ] =0, and the second term H * g takes the form H -1 g, since for m = n, the rectangular matrix
becomes square matrix, and under the assumption detH #0 we have

—1
HY =HT(HHT) ="' ht=nl,
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1.2 The linear case of a stochastic problem with drift control. Let a second-order Ito stochastic
differential equation, linear in drift

X=E (O)x+E,(O)x+Dt)u+1,(t)+T(t)E (1.12)

be given. It is required the control vector-function u = u(x,x,7) € R" by given integral manifold
A@): A =Gx+Gx +1(¢) =0. (1.13)
That is, by the given (m x n)-matrices G,(¢), G,(t) of the m -dimensional function /(¢), also by the
given (nxn)-matrices E|(t), E,(t), (nxr)-matrix D(¢) and n-dimensional function /,(#), it is

required to determine the vector function u =u(x,x,t) € R"and (nxk)-matrix 7(¢) so that for the

constructed equation (1.12) the given properties (1.13) are an integral manifold.
In this problem the equation of perturbed motion (1.4) has the form

A=Gx+Gi+L(t)+Gx+G,(E)x+E,()x+Dtu+1(t))+G,TE, (1.14)

On the other hand, following Erugin's method with the help of an arbitrary vector-function
A= A,(t)A and a matrix-function B, with the property B,(0,x,x,¢) = 0, we have

A= A (H)h+ By (M, x, %,1)E . (1.15)
Hence, relations (1.14) and (1.15) imply the equalities

{GzDu = [4G) = G = GoE [y + [4G — Gy = Gy = G Es [ + Ayl — Goly — i,

(1.16)
G,T = B,.

Further, from (1.16) using Lemma 1, we have

u=s[DCl+(D) g, (1.17)
T; = 5,[GoCl+ (G2 )" B;, i=1k, (1.18)

here D, =G,D, g =|4G\ -G —GyE [x+[4G, -G, -G, ~G,E, |+ AL -Gy, I, T;, B;
are i-th columns of matrices 7' and B respectively. s,, s, are arbitrary scalar values. This proves the
following theorem.

Theorem 1.2. A necessary and sufficient condition that second-order Ito stochastic differential
equation (1.12) linear in drift, has a given linear integral manifold (1.2) is that the control parameter has
the form (1.17) and the diffusion matrix has the form (1.18).

Remark 1.2. In the linear case, in contrast to the nonlinear one S| = §, = §3 =0, the conditions of
solvability in Theorem 1.2 in the presence of random perturbations from the class of processes with
independent increments coincide with the conditions of solvability in a similar linear case in the presence
of random perturbations from the class of independent Wiener processes [21].

1.3 Scalar case of the reconstruction problem with drift controls. Let a second-order Ito
stochastic differential equation

i= fr(x,50)+ (x5, 0up + y(x,%,0)E. (1.20)
be given. It is required to determine the scalar function u, = u,(x,X,?) for a given integral manifold
A(x,x,t)=0, A, eR (1.21)

In other words, for given f5, 7, 1 and A, define the control parameter u, in such a way that the set
(1.21) be an integral set of equation (1.20).
According to the rule of stochastic differentiation, we compose the equation
oAy, 04
242254

A, =
2 ot Ox

oA oA ~ o~ o~ 0 -
2 fo+—2yiu + 8] + 85 + 83 +—2 1y, (1.22)
ox ox ox
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of perturbed motion; here

10°4
2 o2

1=

72, 8y = [ (e i+ ye(r),6)= A4 (x5, 01dP"(1,dy)

~ . ) oA
§2 = [ %+ ye(n),0) = A (3, %,) =2 7 ().
We introduce arbitrary Erugin’s scalar functions a = a(4,,x,X,t) and b =b(4,,x,X,t), with the
properties a(0,x,x,t)=b(0,x,x,) =0 and such that
Ay =a(Ay,x,5,0)+b(Ay,x,%,0)&, (1.23)

In view of (5.3) and (5.4), we arrive at the relations

o2 0y Oy . Ay . = = =

2wy =2 - ~5,-5,-8,, 1.24

P L el e J2=81-82-53 (1.24)
%y:b. (1.25)
Oox

Then, by virtue of equalities (1.24) and (1.25), the control parameter u, and the diffusion coefficient
are defined in the form

-1 2
04y 0hy Ody . Oy, 10%4 5 = =
=| == -2 - —— -8, =583, 1.26
up [axhj {a % o a2 2 2 LTSS (1.26)
-1
04y
=|—==| b 1.27
Y (axj (1.27)

Consequently, the following theorem holds.

Theorem 1.3 A necessary and sufficient condition that second-order scalar differential equation of Ito
type (1.20) has a given integral manifold (1.21) is that the control parameter u; has the form (1.26) and
diffusion coefficient has the form (1.27).

Thus, in Section 1, we obtained necessary and sufficient conditions for the solvability of the
reconstruction problem with drift control in the presence of random perturbations from the class of
processes with independent increments in general nonlinear case, linear case and scalar nonlinear case.
The considered setting generalizes the reconstruction problem in the presence of random perturbations
from the class of independent Wiener processes, previously studied in [21].

2 Meshchersky's stochastic problem

Problem statement. Find the law of change in the mass of a point, at which it describes a given
trajectory under the action of given external forces [22, p.19].

Let us consider the problem of realizing the motion of a heavy point of variable mass m(#) in a

homogeneous gravity field, namely, vertical ascent according to the laws of change in the range y and
height z

AG): {il(t)fy—¢(f)=0, @0

A1) =z -y () =0,

The equations of point motion [1, c.16-17] taking into account the action of random perturbing forces
have the following form:

m§ = i~ 15— mf (z9) % — oy (. 2.0,
v 2.2)
mz = ri(y — 1)z — mf(z,V)% —mg -0, (y, 2,0,

— ) =——
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here f(z,v) is medium resistance per unit mass; v =+/3° + 2> is point speed; = u(t), v =v(t) are

the ratio of the projections of the velocities of the changing mass and the mass of the point itself on the
coordinate axis y, z.

It is required to restore the equations of motion (2.2) (that is, to determine the laws of variation of
quantities 4, v and m ) so that they admit a given particular motion (2.1).

The perturbed motion equations have the form

S m . p O] . .
A= 3= 40 = Z(u=1i = f(z0) ==L E= (o),
m v m
. . (2.3)
S . m . z oy . .
by =2-j(t) == -z~ f(zV)=—g——2&~j(0).
m v m
Further, following Erugin’s method [7], we introduce functions 4} = 4;(4, 2;1, A, /7.,2, V,2Z,t),
Ay = Ay (A4, A1, 40,49, ¥, 2,8), By = B(4, 4,42, 42, ¥,2,t), By = By(4, 44, 40,43, ¥,2,1),
With the properties 4;(0,0,0,0, y,z,¢) = 4,(0,0,0,0, ,z,¢) = B;(0,0,0,0, y,z,¢) =
= B,(0,0,0,0,y,z,¢) =0, and such that
A = A + B¢,
j,'z = A2 + Bzf
Comparison of the systems of equations (2.3) and (2.4) leads, if we exclude strictly vertical and
strictly horizontal motions (i.e., ¢ and y are not identically zero), to relations that solve the posed

Meshchersky stochastic problem
y ..
pmre AL

(2.4)

mly vy
) }
n=1+ﬁ{—.2+i+§.+ﬂ} 2.5)
m| z v z Y
o1 =mBy;,
O-Zj:mBZj'

In particular, for 0;; =0 (i,j=12) and 4 =4, =B; =B, =0 conditions (2.5) coincide with

conditions in the class of second-order ordinary differential equations [1, p. 17].

This research has been funded by the Science Committee of the Ministry of Education and Science of
the Republic of Kazakhstan (Grant No. AP 08955847).
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"Maremaruka >xoHe MAaTeMaTUKAJIBIK MOJEbIEY HHCTUTYThI, AnMarsl, Kazakcran;
29n-MDapabu ateHaarsl Kasak yITTeIK yHEBEpCHTETi, AnmaTel, Kazakcran;
3 AIMAaTEI SHEPTETHKA YKoHE OaliIaHbIC YHUBEPCHUTETI, AnMaTsl, Kazakcran

KEPI CTOXACTHKAJIBIK KAJIIIBIHA KEJITIPY ECEBI TYPAJIbBI

AHHOTAUMSA. ATaTMBIII XYMBICTa JKANIITBl KaJMbIHA KeNnTipy ecebi Ko3ralbic KacHeTrTepi OOWBIHIIA Oackapy
Kupary ko3¢ ¢ummenTiHe Kipreuae ekinmi perti Uto Typirmeri 6epinrer ctoxacTUKanbIK auddepeHIInanapK TeH-
JieyJiep KIACchIHJa KapacThIpbUIa[bl YKOHE KBa3WKaiTapy o[ICIMEH MHTErpalblK KONOSHHEHIH KaXeTTi opl KeT-
KUTIKTI IIApTTapblH KaMTaMachl3 €TETiH OacKapylibl mapamerpiep Typi aHblKTanaabl. TemeHne Memiepckuiiiin
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CTOXACTUKANBIK eceOiHIH MIeIiMi KeNTIpUIreH, oJl AWHAMHUKAHBIH Kepi ecenTepiHiH Oipi OONbIN TaObUIAAbI KOHE
[anuynmuHHIH GenTini Kiaccu(uKalMschiHa COMKEC KaJlbIHA KeNTipy MiHACTIHE jKaTa bl

Kesneiicok Oy3muIysap Toyenci3 ecyi Oap mporecTep KiachblHa jKaTaabl Jen OoynkaHaipl. bepiireH moceneHi
memry yiiH UTO croxacTHkamblk capaiay epexeci OOWbIHIIA OY3bUIFaH KO3FAIBIC TEHJACY1 jkacanaipl. byman opi
epyTUH 9JliCi KBa3MKalTapy oiciMeH OipikTipimin Kypsuianpl: 1) 6ackapyiibl BeKTOp-GyHKIUsIAap *KUbIHBL 2) VTo
TUMIHIH eKiHIII peTTi OepinreH muddepeHIManabK TeHACYIiH OepiireH MHTETpalIbK KernOeitHe e O0Tysl YIIiH
KXKCTTI )KOHE JKETKUTIKTI XKaFaaiiapabl KaMTaMachkl3 eTeTiH quddy3us MaTpUIaapbIHBIH KUBIHTHIFBL.

By3y GackapMachl 0ap CTOXaCTHUKAIIBIK MOCEJICHIH ChI3BIKTHIK JKarqaibl 0enek KapacThIpbutaibl. ChI3BIKTHIK
KOMBUTBIM/IA CHI3BIKTHIK €MEC PYKCAT €Ty JKarJailblHaH ailblpMaIlbUIbIFBI, TAYENICI3 ecyl Oap mpolecTep KiIachlHaH
Ke3zeicok Oy3puTynap OoNFaH Ke3/ie, YKcac ChI3BIKTHIK JKaFaiaa, TOyenci3 BUHEP MpoIecTepl KIAaChIHaH Ke3AeHCOK
Oy3purynmap OOnFaH Ke3le pyKcaT eTy ImapTrapbiHa colikec keneni. CoHpaii-ak, Oy3y OackapMmalapbIMeH KaJlIbIHA
KEeNTIpy MOCEJIECIHIH CKAJSIPIIBIK XKaFaiibl KApacThIPbLIa bl.

Tyiiin cesnep: MTO-HbIH cTOXacTHKAIBIK AUPPEepeHIHATIBIK TeHICY1, KallblHA KenTipy ecedi, Memiepckuit
ece0l, MHTerpaJIblK KOnoelHe, KBa3uKalTapy 9JIici.

M. U. Taey6eprenos?, I'.K. Bacmanna'?, A.T. Capbinfex'?

"MHCTHTYT MATEMATHKHE M MATEMATUYECKOTO MOJIEIMPOBanys, Anmarsl, Kasaxcran;
2Ka3zaxcKuii HAIMOHAIBHEIN YHUBEPCHTET MMEHH anb-Dapadu, AnMarsl, Kasaxcran;
3AnMaTUHCKUM Y HUBEPCHUTET SHEPTETHKHU U CBA3U, Anmartsl, Kasaxcran

Ob OBPATHOI CTOXACTHYECKOM 3AJAYE BOCCTAHOBJIEHUS

AHnHoTanus. B nannOi pabore paccmatpuBaeTcst oOmas 3a1ada BOCCTAHOBIICHHUS B KJIACCE CTOXACTHYECKHX
muddepeHmanbHpIX YpaBHEHNH BTOPOro mopsiaka Tuna Mto mo 3amaHHBIM CBOWCTBAM JBIKCHHMS, KOT/A YIpaB-
JIeHHe BXOIUT B KOA((HHULIMEHT CHOCAa 1 METOIOM KBa3HOOpaIeH!s ONpeaeseTcs BUL YIPaBIAIONIMX IapaMeTpoB,
o0ecrieunBaOnil HeOOXOAUMBIE U JOCTATOYHBIE YCIOBHS CYILECTBOBAHHSA 3aJaHHOTO HMHTETPAJbHOI'O MHOI000-
pasus. [lanee npUBOAMTCS pELICHUE CTOXAaCTUYeCKOW 3a1auu Melepckoro, KOTopas sBJsIeTCsl OJHOM U3 00paTHBIX
3a7a4 JMHAMMKHU M TI0 M3BECTHOM Kiaccudukanuy ["anuyminHa OTHOCUTCS K 3aJja4e BOCCTAHOBJICHUSL.

IIpennonaraercs, 4To ciydaiiHble BO3MYIIEHHMS OTHOCATCS K KJacCy HMPOIECCOB C HE3aBUCHUMBIMH IpHpalle-
HUsIMU. [1J151 pelieHns ocTaBIeHHOW 3a/1a4H 110 MPaBUITy cToXacTudeckoro anddepenuuposanus Mo cocraBnsiercs
ypaBHEHHE BO3MYIIEHHOTo nBIbKeHus. M nmanee merogom EpyrmHa B codyeTaHMM ¢ METOJOM KBa3HOOpAICHHUS
CTposATCS: 1) MHOXECTBO YNpPaBJIAIONIMX BEKTOp-QyHKIMiI u 2) MHOXecTBO Marpul auddysuid, koTopsle odecre-
YHBAIOT HEOOXOJMMBIC M JIOCTAaTOYHBIE YCIOBHS TOTO, 4TOOBI 3aqaHHOE MuddepeHanisHoe ypaBHEHHE BTOPOTO
nopsiaka tumna Mto nMeno 3ajaHHOE HHTETPAIbHOE MHOT000pasHe.

OTmenpHO paccMaTpUBAacTCs IJUHEWHBIA CIydail CTOXAacTHYECKOW 3aJadl C yIpaBlIeHHEM II0 CHocy. B
JIMHENHOW MOCTAHOBKE B OTJIMYUE OT HEITMHEMHOMN YCJIOBUS Pa3peliMMOCTU NPU HAJIMYUM CIy4YalHbIX BO3MYIIECHUN
U3 Kjacca MpOLECCOB ¢ HE3aBUCHMBIMU IPUPALICHUSIMU COBHAJAIOT C YCIOBUAMH Pa3pellMMOCTH B aHAJIOTHYHOM
JIMHEHOM CJIy4ae MpY HAIMYMU CIIy4alHbIX BO3MYLICHUH M3 KJ1acca HE3aBUCUMBIX BUHEPOBCKUX MpoLeccoB. Taxxe
paccMOTpEH CKalsIPHBIHN ciTydail 3a71a4 BOCCTAHOBJIEHUS C YIPABICHUAMHU IO CHOCY.

KiroueBble cioBa: croxacTuueckoe nuddepeHnuanbHoe ypaBHeHHe MTo, 3amaua BOCCTaHOBICHUS, 3ajada
Mernepckoro, MHTErpajbHOE MHOI000pasue, MeTO L KBa3uoOpaIleHusl.
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