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RESEARCH OF MULTIPERIODIC SOLUTIONS OF PERTURBED
LINEAR AUTONOMOUS SYSTEMS WITH DIFFERENTIATION
OPERATOR ON THE VECTOR FIELD

Abstract. A linear system with a differentiation operator D with respect to the directions of vector fields of the
form of the Lyapunov's system with respect to space independent variables and a multiperiodic toroidal form with
respect to time variables is considered. All input data of the system multiperiodic depend on time variables or do not
depend on them. The autonomous case of the system was considered in our early work. In this case, some input data
received perturbations depending on time variables. We study the question of representing the required motion
described by the system in the form of a superposition of individual periodic motions of rationally incommensurable
frequencies. The initial problems and the problems of multiperiodicity of motions are studied. It is known that when
determining solutions to problems, the system integrates along the characteristics outgoing from the initial points,
and then, the initial data is replaced by the first integrals of the characteristic systems. Thus, the required solution
consists of the following components: characteristics and first integrals of the characteristic systems of operator D,
the matricant and the free term of the system itself. These components, in turn, have periodic and non-periodic
structural components, which are essential in revealing the multiperiodic nature of the movements described by the
system under study. The representation of a solution with the selected multiperiodic components is called the
multiperiodic structure of the solution. It is realized on the basis of the well-known Bohr's theorem on the connection
of a periodic function of many variables and a quasiperiodic function of one variable. Thus, more specifically, the
multiperiodic structures of general and multiperiodic solutions of homogeneous and inhomogeneous systems with
perturbed input data are investigated. In this spirit, the zeros of the operator D and the matricant of the system are
studied. The conditions for the absence and existence of multiperiodic solutions of both homogeneous and
inhomogeneous systems are established.

Keywords: multiperiodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector field,
perturbation.

1. Introduction. The foundations of the method used in this note were laid in [1, 2], which were
further developed in [3—14] and applied to the study of solutions different problems in the partial
differential equations [15, 16]. These methods with simple modifications extend to the study solutions of
problems of the differential and integro-differential equations of different types [1-16], in particular,
problems on multi-frequency solutions of equations from control theory [17]. Many oscillatory
phenomena are described by systems with a differentiation operator with respect to toroidal vector fields,
and new methods based on the ideas of the Fourier [18], Poincaré-Lyapunov and Hamilton-Jacobi
methods [19, 20] appear to establish their periodic oscillatory solutions. The methods of research for
multiperiodic solutions are successfully combined by methods for studying solutions of boundary value
problems for equations of mathematical physics. Elements of the methods of [1, 2] can easily be found in
[21-25], where time-oscillating solutions of boundary value problems are studied by the parameterization
method.
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As noted above, the considered system of partial differential equations along with multidimensional
time contains space independent variables, according to which differentiation is carried out to the
directions of the different vector fields. The autonomous case of this system was considered in [15, 16],
where differentiation with respect to time variables was carried out in the direction of the main diagonal of
space, and the free term of the system was independent of time variables. In this case, these parameters of
the systems received perturbations depending on time variables. In the note, the method for studying
multiperiodic structures of general and multiperiodic solutions is developed, the conditions for the
existence of a multiperiodic solution are established, and its integral representation is given.

We consider the system of linear equations

Dx = Ax + f(z,t,¢) (1.1)

with differentiation operator

D:i+ a,é + V]Cf+g,i, (1.2)
ot ot o¢

where Te(—oo,+oo):R, Z‘I(l‘l,..., tm)ERX...XRZRm,é':(é’I,..., Q’I)ER;I,
£ =(E.m) J=LLR =Y, =&, n) e R ¢ |= & +n7 <6,/ =11},

O =const >0 are independent variables with areas of change;gz i,,,_, i and
ot | ot ot,
0 0 0 —
9 :( 0 yeees 0 J, = , , j=1,lare  vector differentiation  operators;
o¢ \og g, ) ag, | ag, am,

I =diag (12,...,]2) is a matrix with [-blocks, I

, is symplectic unit of the second order,

v =(V1, v Vl) is a constant vector, v I =diag (VIIZ,...,V[IZ),
a=(a,(z,0),...,a,(zr,0) = a(z,1), g = (g,(v),..., g (r)) = g(r) are vector functions, (, ) is the
sign of the scalar product of vectors; A is a constant B XM -matrix, [ = f(7,t,{) is H-vector-
function of variables (7,7, ) € Rx R" x R}
The vector function x(7,¢,¢) is called (6, ®)-periodic with respect to (7,¢) if the identity
x(r+60,t+qw,l)=x(r,t,¢), (r,t,{)e RxR" xR)', qe Z",
was fulfilled, where Z" =Z X...XZ, Z is the set of integers, @ = (@, ..., ®, ) is the vector-period,

and the periods @, = 0,0,,..., @, are rationally incommensurable positive constants:
q,0,+q.0, %0, q,,q9,€Z,(j, k=0,m).

The motion described by a (8, w) -periodic with respect to (7,¢) function x = x(7,¢,¢ ) is called a

multiperiodic oscillation.
The main objective of this note is to determine the multiperiodic structures of solutions of the initial-
multiperiodic problems associated with the system (1.1) - (1.2).
The objective was partially been touched upon by the authors in [15, 16], when the problem of
multiperiod solutions of the autonomous system of the form (1.1) - (1.2) was considered, where time
variables 7,¢ did not explicitly enter.

2. Multiperiodic structure of zeros of the differentiation operator D . We introduce the equation
Du=0 (2.1)
with the required scalar functionu = u(7,1, § ), where D is the differentiation operator with respect to
(z,t,{) of the form (1.1).

— (4 ——
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The solutions of equation (2.1) are called the zeros of the operator D .
Suppose that 1) the vector function a(r,) has the property of smoothness with respect to

(7,t) € RxR" oforder(0,e) = (0,1,...,1):
a(r+0,t+qow)=a(r,t)e C"'(RxR"), qe Z", (2.2)
2) positive constants V,, ..., V, rationally incommensurable:
2 2 . .
qv.+qv,#0, q. +q;#0, q.,q,€Z, (0, j=0,l), (2.3)
therefore, numbers a, = 27 V;l, Jj= 1,/ are also incommensurable.

3) vector-functions g, (Z’ ) = ((p/ (1), v, (r )), J= ﬂ are continuous and ﬂj -periodic:
g (T + 5 ) =&, (T) € CEO)(R): Jj= 1,1, (2.4)

where &, , k =1,/ and ,B I Jj= 1,/ are incommensurable positive constants.

It follows from condition (2.2) that the vector field
dt

d_r = a(z‘,t) (2.5)
determines the characteristic

t=Ac,2°.1"), 2.5Y

emanating from any initial point( 7’ 1 ‘ ) € Rx R", and moreover, it has the properties:
1" =", 1,0), (2.5%)
A, t", A(",r,t)) = A(c',7,t), 7', 7" € R, (2.5%)
A’ +0,t+0,t+qw)=A",t,t)+qw, g Z", (2.5%
DV(A(z’,7,0))=0, V(1) e C(R"). 2.5%)

Obviously, 4 = v (/1(2' ’ ,T,t )) satisfies the initial condition

u|_, =v(t)yeC” (R”“ ) 2.1

Properties (2.52) - (2.5%) of the characteristic (2.5") of the vector field (2.5) are known from [2]. Hence,
we will not dwell on their justification.
The solution

u(z‘o,r,t)z v(/l(ro,r,t)) (2.6)
of the problem (2.1) - (2.1") is called the zero of the operator D with the initial condition (2.1").
Lemma 2.1. Let condition (2.2) be satisfied. Then under the condition

v(it+qo)=v()eC(R"), gez" 2.7)
the zeros (2.6) of the operator D with the initial data (2.1') have the multiperiodicity property of the form
u(z’+0,t+0,t+qw)=u(c’,z,t),qeZ". (2.8)

The proof of identity (2.8) follows from the structure of zero (2.6), property (2.5*) which is a
consequence of condition (2.2), and from condition (2.7).

Note that property (2.8) represent the diagonal @-periodicity u(z‘o ,T,t ) with respect to (‘L’O R Z') and
W -periodicity with respect to £.
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In particular, when a function A(7 ‘ ,T,1)is O-periodic with respect to 7 or T ‘ , then the zeros (2.6)

of the operator DD under the conditions of the lemma are (&, ®) -periodic with respect to (7, 7).
The vector fields

—=v, ¢, +g, (@), j=L1 (2.9)

in scalar form have the form

L= _anj + q)_/ (T)’
T (2.10)

7, :
E:Vjéj-i_l//j(z.)’ J= 91'

Obviously, the matricants Z ; (7), j= I,_I of the systems (2.10), and, consequently, the systems (2.9),

are determined by periodic relations

cosvV,T —sinvjr —
Z,(t)=| . , J=L1 (2.11)
sinv,z  CosV,T

with periods @, =277V;", j =1, The conditions
det|Z (8)-Z,(0)]=0, j=1,1. 2.12)
are satisfied by virtue the incommensurability ¢, and /3, . Indeed
det|Z,(B8)-Z,(0)|=2(1-cosv,B3,)= 0
since B, —q,&, #0, j =1,1.

Then systems (2.9) allow for ﬂj -periodic solutions

r+ﬂ/

z ()= [Z (t+B)-Z; (T)T jZ (s)g;(s)ds, j =11, (2.13)

Consequently, the general solutions é’ of the systems (2 9) have the form

=2 - -z, )+z,@) =11, (2.14)

where the matricants Zj (r), j= 1,_1 and solutions zZ, (), j= I,_Z have periodicity properties
Ze+va,)=2,@0) j=11, (2.15)
2 e+ p)=2,@) j=11 (2.16)

We must introduce new time variables S5 0, j= l,l and space variables hj, J= 1,_1 related by

relations
0 0 0)_ 0 o0 s _ 17
hj(sj =850, 6, =2, )_ Zj(Sj S, )[41 Z; ]+ Zj(o-j)» J=L1, (2.17)
in order to represent solutions (2.14) using periodic functions with incommensurable periods
a,, ,Bj , ] = 1,/, where Z;.) =z, (S? ), S? are the initial values of the variables Sis ] = l,l.
Obviously, the multiperiodic functions (2.17) present the solutions (2.14) under
Oo,=8,=7, § ? = 7°, moreover, they satisfy equations
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Ooh. Oh, . —
~+——=v . Lh+g (o) j=1l1 (2.18)
os. oo, T T/

J J

with the initial conditions

h,

J

o,=s =" =¢ J'O’ J =11, (2.18°)

By virtue of the properties (2.15) and (2.16) of the matricants ZJ. (7) and the solutions z, (1), the

functions (2.17) have the properties of multi-periodicity
0)_ 0)_ 0 .17
hj(Sj tQ;,0,,6, )_ hj(Sj’Gj + 5,65 )_ hj(sj,aj, j )’ J=LL (2.19)
Thus, we obtained from systems of equations (2.9) to systems of equations (2.18) with initial

conditions (2.18°) by introducing new time variables.
We get the equations (2.9) and their solutions (2.14) from the systems of equations (2.18) - (2.18°) by

substitution o,=8,=1, S? =7’ conversely.

The close relationship between the functions o,=0, (T) and hj = hj (Sj , Jj) of the form
do. dh\t,r) Oh\s.,o ) Ohl\s , o,
G.(T)Zh.(T,T), J J( ): ](J /)+ 1(/ ])
’ ! dr dt 0s, oo,
with o,=8,=7 leads to a transition from the differentiation operator DD to the differentiation operator
p=24 <a(r,t), §> + <e, £> + <e, i> + <v1 h+g(o), £> + <% + %, i>, (2.20)
ot ot 0os oo oh Os 0o Oh
where § =(s,,...,5,), 0 =(0,,...,0,), e = (1,...,1) — [-vector,h = (h,,..., h,), hj = hj(S_/,O'j),
. oOh (8}11 Gh,J oh (ahl 8h,j
j=1 = = :

os \os, e, ) oo oo, o,
Further, we obtain the characteristic
=2 -7")¢" -2+ 2(7) (2.21)
of the matrix-vector equation
dg
——=vI{+g(7r), (2.22)
dr

which is characteristic for equation (2.1) with respect to space variables, based on the coordinate data (2.9)
- (2.16), where Z(7) = diag V4 (). Z, (T)], z2(r)=(z,(t),.... 2,(7)), £° = (g”l",..., é’lo).
We have the first integral
¢ =20 )¢ @)+ ()= u(e"7.¢) (223)
of equation (2.22) from the equation of characteristic (2.21).
Therefore, we obtain the identity
D,u(ro,r,g):o, y(r°,r°,§)=§. (2.24)
Then we have the solution
u(ro,r,g”)zw(,u(ro,r,g”)), (2.25)

of equation (2.1) satisfying the initial condition

. =w()eCOR'), @2.1"

u

for any differentiable function W(g ) € Cée) (Rl )
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. ow : : .
Indeed, since Du = % Dy, by virtue of (2.24) we have Du =0. Thus, (2.25) with the condition

(2.1") is the zero of the operator D .
Further, we have a vector function

h(s -5’ z(0), £’ - ZO): Z(s - so)[é’o - Z(SO)]+ z(o), (2.26)
satisfying the characteristic equation of the operator D of the form
oh Oh
—+—=vIh+g(0) (2.27)
os Oo
with the initial condition
h ‘o‘:s:s" = ;O’

based on our analysis related to relations (2.17) - (2.19) for studying the multi-periodic structure of

characteristic (2.23), where g(U) = (gl (61 ),..., g, (O', )), Z(O‘): (Zl (O'1 ),..., z, (O', )),
Z(s)=diag [Z,(s)s Z,(s))} B=(hes ) b, = h (s, = 5°,2(0°), ¢° = 2(s")) j=L1,

oh (oh  oh )\ oh (on  oh
os \as,os, ) o0 oo, o, )

Obviously, by virtue properties (2.15), (2.16) and (2.19), the matrix Z (S) is periodic with period
a =(a,,...,a,) , and the solution Z(O‘) with period £ = (B,,..., B,).
The first integral of the equation (2.27) is determined from the equation of characteristic (2.26) by the

relation
£ =h(s' —s5,2(s°), & - z(0)).

It's obvious that

Dh(s" —s5,2(s"),{ —2(0))=0, h| __, =¢. (2.28)

U=S=S0

Moreover, we have

Ew(h (S° -s,2(s°),¢ —z(O'))): ag—gl)~5h (so —s,2(s°),{ - Z(O'))= 0,

for any differentiable function w(é’ ) , by virtue of (2.28), at that

w(h (SO —s5,z(s°),¢ — Z(O')))| C=w(¢)

Thus,
LT(SO,S,G,Q’): w(h (so —5,2(5°),¢ — Z(G))) (2.29)
is the zero of the operatorE ,that under 0 = s =72, s’ =7"¢ it becomes the u (ro, T, 4’) zero of
the operator D , where € = (1,...,1) isa / -vector.

Lemma 2.2. Let conditions (2.3) and (2.4) be satisfied. Then the zeros (2.25) of the operator D with
the initial condition (2.1") have a multiperiodic structure of the form (2.29) with the vector function
(2.26), at that

I/_l(SO,S, 0,6 ooiore = u(’[o,’[,é/), (2.30)

h(Ero -er,z(e7’), ¢ —Z(Er))z y(ro,r,g).
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Theorem 2.1. Let conditions (2.2) - (2.4) be satisfied. Then the solution u (2'0, 7,1, g) of equation
(2.1) with the initial condition

u'(t,¢)e CEO(R" < R') 2.1°)

u

is determined by the relation

u(r“,r,t,g”):uo(/i(ro,r,t),u(ro,r,g”)), (2.31)

Az e+ 0,6)= 2", 7,1), (2.32)
(t+qa)§) u( é’) qe’l” (2.33)
has a multiperiodic structure with respect to (z’ 1,8, O') with period (19 ,0,a, 0 ) of the form
LT(TO,T,t;SO,S,G,é’): uo(/i(fo,r,t),h (s° —S,z(so),é’ — Z(O'))), (2.34)
where the vector-function h(S,Z,C) has the form (2.26), e = (1,...,1) is M -vector, € =(1,...,1) is

Z-VQCIOV, moreover

which under the conditions

ul,. YFT_M(TO,T,Z‘,Q/) (2.35)

Y(i ET”

Proof. The form of solution (2.31) of the initial problem (2.1) - (2.1°) follows from the general theory
of the first-order partial differential equations. Special cases of it are given in Lemmas 2.1 and 2.2.

The multiperiodic structure (2.34) of the solution (2.31) is also contained in the indicated lemmas; and
the multiperiodicity is easily verified under the additional conditions (2.32) and (2.33).

The statement (2.35) follows from (2.30).

—_—(_o 0 . . . — .
Note that, U ZM(T ,T,1,8 ,S,G,é’ ) is the solution of the equation Du =0 with the

differentiation operator D .

The proved theorem is the multiperiodic structure of the zeros of the differentiation operator D .

In conclusion, we note that if the conditions (2.32) and (2.33) do not fulfill, then the representation
(2.34) remains the multi-periodic structure of the solution (2.31). But then a definite structure (2.34) does
not possess the periodicity property with respect to 7,7 .

3. The multiperiodic structure of the solution of a homogeneous linear [ -system with constant
coefficients. We consider a homogeneous linear system

Dx = Ax (3.1)
with a differentiation operator [J of the form (1.2) and a constant 72 X 7 -matrix A.

We will put the problem of determining the multiperiodic structure of the solution X of the system

(3.1) with the initial condition

,=u(t,{)e CEO(R" x R"). (3.1°)

To this end, we begin the solution of the problem by studying the multiperiodic structure of the
matricant

X

=T

X(r)=exp[dr] (3.2)
of the system (3.1).
We need the following lemmas to that end.

Lemma 3.1. If f;(l'-l-gj):f;(f), i =17 is some collection of the periodic functions with
rationally commensurate periods: 9}. /0, = vy isa rational number for j,k =1,r, then for these

functions exist a common period 6:

fj(2'+6’): f/(r)’ J :19_’”-
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Indeed, by virtue of rational commensurability exist integer natural numbers ¢ ,..., g, such that
q,0, =...=q.0. =0, which is the required period.

Lemma 3.2. If the real parts of all eigenvalues equal to zero and all the elementary divisors are
simple of the constant matricant Y (T) = exp [[ Z‘], then all the elements of the matrix I are periodic
functions.

Proof. By the conditions of the Lemma 3.2, the cigenvalues are A ([ )= ib,, j= l,_r, where

i = ~/—1 is the imaginary unit; the constants b/. are either equal to zero or nonzero. If it is nonzero, then

each eigenvalue /1/. ([ ) = ibj corresponds to one or more Jordan cells J ; of the form

S _[0 -b
o\, 0

Y(r)=K ah'ag[ellf,...,eI’T]K_l ) (3.3)
where if bj =0, then I, = 0 andif bj # (0, then I, =J, moreover

Then the matricant has the form

v . cosbjr —sin bjz' (b 0)
(r)=¢e" = , \b. #0), 3.4
/ (B)=e sin bj.r cosbjr / 34

K is a matrix of reduction / to the actual canonical form [ = K diag [I R ]K -

We have a complete proof of the Lemma 3.2 from relations (3.3) and (3.4), and the periods of the
elements of the matrix ¥ (T) are determined as y, = 27rbj_]l sy ¥ p = 27z'bj'1 on the basis of the Lemma

3.1, taking into account the commensurability of the periods 272'[);1 , ] =17, p <r Periods Vises?
are rationally incommensurable constants.
Further, cells Y/.k (T ), J, =1,r, of the form (3.4) having the periodicity property with a period 7,
will be considered as cells depending on the variable7 = 7, :
Y/k(Tk+}/k):ij(Tk)’ Je=Lr. 35
Representing each cell (3.4) using the new variables 7 ,..., 7, in accordance with condition (3.5),
from the expression of the matricant (3.3) we obtain a multiperiodic matrix T(f ) =T (Z'] yeers Z‘p) with

period y = (7/1,---a 7,))'

Since

or, ik it
the matrix 1’ (f ) satisfies the equation
DT(7)=1T(7), (3.6)
where the operator D s determined by
13:<é, i>:i+...+i, (3.7)
ot/ O, 0T,

e =(1,...,1) isa O -vector.
Obviously, under 7 = e 7T we have T (é T) =Y (Z') and

— 70 —
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iY(r):iT(ér):lT(ér):11/(1). (3.8)
dt dt
Thus, the multiperiodic matrix 7' (’f ) defines the multiperiodic structure of the matricant ¥ (Z‘ ):
Y(r)= T(rl,...,rp)ﬁ:m:r (3.9)

Lemma 3.3. The matricant Y(T) of the system (3.8) under the conditions of Lemma 3.2 has a multi-
periodic structure in the form of a matrix T(f ) = T(z'1 yeees T, ), which satisfies the system (3.6) with the

differentiation operator (3.7) and along the characteristics T = € T of the operator D turns into Y (Z' )

in other words, these matrices are related by the relation (3.9).
It’s known that from the course of linear algebra the matrix A can be represented in the form

A=KJA)K'=KJ(a+ib)K' =K J(a)K ' +KE(@b)K"' =R+1,
where K is some non-singular matrix for reducing the matrix A to Jordan normal form
J (/1)2 diag [J | (/11 ),..., J, (/Ir )] with Jordan's n -cells J, (/1}.) corresponding to eigenvalues
A, =a + ib}., j= 1,_r ;R=K J(a)K ' is the matrix, J(a) is matrix obtained from the Jordan
form J (/1) by replacing the eigenvalues /Ij with their real parts a =Re Al , j= I,_F,

I =K E(ib)K’1 is the matrix, E(ib)Zdiag[l'blEl,...,ibrEr], b]. :Imﬂj, J =1,_I”, E, is the

unit 72,-cells, j=1,7, moreover, the matrices R and [ are commutative: RI = IR.. Therefore,

4 Ir+R Ir R . .
e"=e" =e e , otherwise, the matricant (3.2) can be represented as

X(r)=Y(r) Z(r), (3.10)
where Y (2') = exp [[ T],Z (Z')z exp [R z’], moreover, along with property (3.8), ¥ (Z' ) satisfies the

equation

diY(z'):AY(z')—Y(z')R. G
T
Indeed, we making the replacement
X =Y(c)z

in the equation

X =AX (3.12)
obtain the equation

7oy (T)[A Y(r)- diy(f)}z |
T

Then, we obtain the identity (3.10) taking into account that 7 =RZ , where Z (z’) = exp [R Z'].

The identities (3.8) and (3.11) establish the connection of the matricant Y (z‘) =exp [[ 2'] with the
triple of matrices A, R, I ; moreover, the matrix [ satisfies the conditions of Lemma 3.2. Therefore,
according to Lemma 3.3, the multiperiodic structure of the matricant X (2’) = exXp [A T ], by virtue of
equality (3.10), is determined by a matrix X (Z’ T ) of the form

X(z,7)= X(T,Tl,..., Tp)z T(Tl,..., 7, )eR’, (3.13)
which is connected by the matricant X (Z' ) , by relation
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)A((r,f)(ﬂ_, = X(7). (3.14)
Thus, the following theorem is proved.
Theorem 3.1. In the presence of complex eigenvalues of the matrix A, the matricant (3.2) of the

system (3.12) has a multiperiodic structure defined by the matrix (3.13) and relations (3.6) - (3.9), and it

along the characteristics T = e T of the operator D satisfies condition (3.14). The matrix T (‘f ) turns
into a constant matrix in the absence of complex eigenvalues.

Now the solution of the objectives set can be formulated as Theorem 3.2.

Theorem 3.2. Let conditions (2.2) - (2.4) be satisfied. Then the solution x(z'o ,T,1, é’) of the problem
(3.1) - (3.1°) defined by relation

x(ro,r,t,;’)z X(r)u(/l(ro,r,t),,u((ro,r,é’))) (3.15)

has a multi-periodic structure in the form of a vector-function

x(r 7,7,t, 8's,0 g“) (r T)u( (r T t) ( S,Z(SO),g—z(O'))), (3.16)

that satisfies equation

DX = A% (3.17)

with the differentiation operator

D=D+D, (3.18)
defined by relations (2.20) and (3.7).
Proof. The representation (3.15) is known from [2], and (3.16) follows from the proved Theorems 2.1
and 3.1. The identity (3.17) can be verified by a simple check.
Now we investigate the question of the existence of nonzero multiperiodic solutions of the systems of
equations (3.1).We begin the study with the simplest cases.
We consider a canonical system with a single zero eigenvalue

dx, dx, dx,
=Y, = -xl 9ecey = n—-19
dr dr dr
which in the vector-matrix form has the form
dx
d_ = E X, (3.19)
r

where E| is the sub-diagonal unit oblique series of the /-th order, x = (X,5.ees X, ).

We introduce a triangular matrix X' (7) with elements of the form of power functions:

1 0 .. 0
T 1 .. 0
X, (7) =
Z_n—l z_n—Z
(n=1! (n=-2)!

and an arbitrary constant vector ¢ = (c,,..., C,) to represent the general solution X of the system (3.19).
Then the general solution of the system (3.19) is represented in the formx = X (7)c.
It easy to see from the structure of the general solution that system (3.19) admits a one-parameter
family of periodic solutions X " of the form
x(r)=X,(7)c’, (3.20)

where ¢” = 0,...,0, C:) , C: is an arbitrary parameter.
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Next, we consider a system of pairs (x; R x;.' ) of equations of the form

' v dx' dx" -
—t==bx!, —=bx], —+=x, —bx], =X +bx, =11,
dr dr dr dr
which can be represented using the vector X, = (x; R x;.' ) in the form
dx dx. L —
d—‘ =bl x,, d—’ =Ex +blx,, j=1,1,
T T
where E2 is the second-order identity matrix, 7, is the second-order symplectic identity matrix,
b =const #0.
If we introduce a constant block matrix
bl, O O O 0 O
E, b, O .. O O O
o) O E, bl, O 0 O
O O O .. E bl O
O O O .. O E, bl

with blocks 1 2,E2 and second-order zero blocks (), then the system under consideration with a vector

X = ()C1 yeees xz) can be represented in the form

@:J(b)x, (3.21)
dr

which we call a canonical system with a single pair of purely imaginary conjugate eigenvalues
A = (ib,— ib).
We introduce a diagonal block matrix
T°(z) = diag [T,(z),..., T,(7)]
with a block T; (T ) of the form
cosht —siner

sinbr cosbr

T;<r>=(

and a triangular block matrix with elements of the form of power functions:

E, 9, )

E, E, .. O
Y'(r) =
Z_1—1 Z_I—Z

E2
(I —1)! (1-2)!
to represent the general solution X of the system (3.21).

EZ

2
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Then the matricant X “(7) of the system (3.21) can be represented as X "(z) =T (7)Y (1),

and the general solution X (T) is determined by the relation
x(t)=X"(7)c
ith an arbit tant vector € = (C,,...,¢, ), € —(c’ c”) =1,/
with an arbitrary constant vector € =\Cy,...,C, }, ¢, =\C;, C; ), ] =1,L.

We obtain easily a family of @ = 27" -periodic solutions x’ (7) by parameters ¢, and ¢, of the
form
x(r)y=X"(7)c’ (3.22)
with a constant vector ¢* = (0, ., 0,¢, ), C, = (Cl', Cz”) from the structure of the general solution

Now, by replacing X = Kz with a non-singular constant matrix K , we reduce the system (3.1) to the
canonical form

Dz = J(A)z, J(4)=K 4K , (3.1

which consists of subsystems in accordance with Jordan's cells of the matrix A .

Obviously, systems (3.1) and (3.1') are equivalent with respect to the existence of multiperiodic
solutions.

It is also clear that the system (3.1') has subsystems of the form

4
Dz = E.:, (3.1)
or
!
Dz, =J(D)z,, (3.1)
respectively with matrices similar to the matrices of systems (3.19) and (3.21), in the presence of zero or
. . . . . . !
purely imaginary eigenvalue. Obviously, nonzero solutions of (3.20) and (3.22) satisfy the systems (3. 11)
and (3.1)), respectively
Consequently, in the cases under consideration, system (3.1') allows nonzero periodic solutions
z' (7). Then Kz *(7) = x"(7) is a periodic solution of the system (3.1).
Thus, the following theorem is proved.
Theorem 3.3. Under the conditions of the Theorem 3.2, the system (3.1) allowed nonzero
multiperiodic solutions enough for the matrix A to have at least one eigenvalue A = A(A) with the real
part Re A(A) =0 equal to zero.

We have the following theorem from the theorem 3.3, as a corollary.
Theorem 3.4. Under the conditions of the Theorem 3.3, the system (3.1) did not admit the

multiperiodic solution other than trivial, it is sufficient that all eigenvalues of the matrix A have nonzero
real parts.
Since the system (3.1) is (@, @) -periodic, of particular interest is the question of the existence of its

nonzero multiperiodic solutions with the same periods.
The general solution X of the system (3.1) can be represented in the form

x(7,t,¢) = X(v)u(z,t,0), (3.23)
where u =u(7,t,(’) is the zero of the operator D with the general initial condition for 7 =0
x(0,£,8) =u(0,1,8) =u,(1,9),
X (t) = exp[4 7] is the matricant of the system.

Among the zeros of the operator [ there exist multiperiodic ones, in particular, constants by the
Theorem 2.1.
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Theorem 3.5. Under the conditions (2.2) - (2.4), the system (3.1) had (6, @) -periodic with respect
to (7,t) solutions of the form (3.23) corresponding to the multiperiodic zero of the operator D with the

same periods, it is necessary and sufficient that the monodromy matrix X (6) satisfies condition

det[X (6)- E]=0. (3.24)
Proof. Under the conditions of the theorem, its justice is equivalent to the solvability of equation
X(t+0)u=X(t)u (3.25)

in the space of (6, @) -periodic with respect to (7,¢) zeros u =u(7,¢,{) of the operator D .
We arrive at the solvability of the system of equations
[X(@)-E]u=0,
which is equivalent to the condition (3.24) taking into account the properties of the matricant
X(t+60)= X (r)X(0) from the system (3.25).
In conclusion, we note that the fulfillment of condition
det[X (0)-E]# 0 (3.26)
guarantees the absence of such solutions.
We also note that condition (3.24) is a sufficient sign of the existence of the nonzero multiperiodic
solution of the system (3.1).
Theorem 3.6. Let conditions (2.2) - (2.4) and (3.26) be satisfied. Then the system (3.1) allowed
nonzero (6, ®) -periodic solutions of the form (3.23) necessary and sufficient for the functional-

difference equations
u(z+0,t+qw,¢)=[X0) - E[' X(0)[u(z +0,t + g, ) —ulz,t,0)|, ge 2" (3.27)

to be solvable in the space of zeros of the operator D .
Proof. Under the condition (3.26) from the definition of (€, @) -periodicity with respect to (7,7) of

solution (2.23), we have the equation (3.27). We must be to take into account that ©(7,¢,) is the zero

of the operator [D to complete the proof.

If the equation (3.27) has only zero solutions, then, under the condition (3.26), the system (3.1) does
not have a nontrivial multiperiodic solution.

We also note that the fulfillment of the condition

Red.(4)#0, j=Ln
on the non-zero real parts Re ﬂj (A) of all eigenvalues /1/. (A) of the matrix A ensures the fulfillment

of condition (3.26).
In conclusion, we note that on the basis of the multiperiodic structures (2.30) and (3.13) the

characteristics 1(z°,7,{) of the matricant X (7) and by the theorems which proved above, it is easy to
obtain structures of (€, @) -periodic with respect to (7,%) solutions of the system (3.1) expressed in

terms of variables 7,7,5,0,¢,¢ .

4. The multiperiodic structure of an inhomogeneous linear system with operator D. Consider the
inhomogeneous linear equation

Dx = Ax + f(7,t,{) 4.1)
corresponding to the homogeneous equation (3.1), where the F-vector function f(7,f,{) satisfies
condition

f(2'+9,t+qa),§)= f(z',t,é')e Cr(i’j’e)(RxR’” xR’). 4.2)
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Assume that the condition (3.26) is fulfilled and we search for the (6, ®) -periodic with respect to
(7,t) solution x(7,7,{) of the system (4.1) that corresponds to zero u(7,%,{) of the operator D
possessing the property of multiperiodicity with the same periods (&, @) for (7,1).

Therefore, we have the solution

*(z.0,0) = X(Oulet. )+ X0 X () (5. A,z 0 (s, 7. s (@3

with zero u(2'+6’,t+qa),é')=u(z',t,é'), geZ" of the operator ) having the property
x(r+6?,t+qa),§)= x(r,t,é’), qe’Z".

Then the solution (4.3) has another representation
7460
x(7,6,8)=X(r+0)u(r,1,)+ X(c +6) IX’I (5)f (s, A(s, 7 +0,0), (5,7 + 6,0))ds. (4.4)

Further, we obtain

x(7,t,¢)= [)(”1 (r+6)-Xx" (T)F[TXI (s)f (s, A(s,7+60,0), u(s,7+6,8))ds +

+ I X7(s)f (s, ACs,7,0), (s, 7, g“))ds}

T

4.5)
eliminating from identities (4.3) and (4.4) the unknown zero u(7,¢,{ ) of the operator D, where the

reversible of the matrix [X - (T + 49) -X (T )] follows from condition (3.26).
If we accept the notation
f(s,A(s,7,0), a(s,7,¢)), T —>0,

fg(S,/i(SaTat)aﬂ(S’T’g)):{f(s,ﬂ(s,z-+49,t),,u(s,2'+9,§)), 0——>7+86,

then formula (4.5) can be represented in a more compact form
x(r,t,é’):[ (Z'+(9 ] IX fg S,A(8,7,1), (s, g”))ds (4.6)

where ¥ ——> 0 means changes in the variable S from } to O . Obviously, if the system (3.1) does

not have multiperiodic solutions, except for zero, then the solution (4.6) of the system (4.1) is a unique
multiperiodic solution.
Further, we have solutions

X(s,0,7,7,8,¢)=|X [ Ne+6,7+e0)-X (r,f)rx
x jX e)f, (e, A(e,7,0),h(e —s,2(¢),¢ — z(0)))de

4.7)

of the equation o
Dx = Ax+ f(z,t,£)

with the differentiation operator (3.18) from representation (4.6) on the basis of multiperiodic structures
(2.30) and (3.13) of the quantity x(s,7,{) and X (7).

Thus, the following theorem is proved.
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Theorem 4.1. Assume that conditions (2.2) - (2.4), (3.26) and (4.2) are satisfied, and the
homogeneous system (3.1) does not have multiperiodic solutions except zero. Then the system (4.1) has a
unique (6@, ®) -periodic solution (4.6) for which the (a,p,y,0,®)-periodic with respect to

(s,0,7,7,t) structure (4.7) satisfies equation (4.8) with the differentiation operator (3.18).

In conclusion, note that we can derive the multiperiodic structure of the general solution (4.3) of the
system (4.1) similarly to formula (4.7).

Conclusion. A method for studying the multiperiodic structure of oscillatory solutions of perturbed
linear autonomous systems of the form (1.1) - (1.2) was developed. The main essence of the method for
studying the multiperiodic structures of solution of the system under consideration is a combination of the
known methods [1-3] with the methods used in [15, 16] for the autonomous systems. In this case, some
system input received perturbations depending on the time variables 7, ¢. In conclusion, the sufficient
conditions for the existence of the multiperiodic solutions of linear systems (1.1) - (1.2) with the
differentiation operator D in the directions of a toroidal vector field with respect to time variables and of
the form of Lyapunov's systems with respect to space variables were established. Moreover, relation (4.6)
is an integral representation of the multiperiodic solution of the system, and (4.7) determines its
multiperiodic structure. We also note that the integral representation given here differs from the analogue
given in [15, 16].

90X 517.956
FTAMP 27.31.17

7K.A.Capradanos ', B.JK.Omaposa ', A.Kepumoekos *
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2
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BEKTOPJIBIK OPIC BOMBIHIIIA JADOEPEHIHUAJIIAY OHEPATOPJIBI KO3JBIPBLIFAH ChI3bIKTBI
ABTOHOMJbBIK KYHUEJIEPAIH KOIMNIEPUOATHI LIEINIMJAEPIH 3EPTTEY

AnHotamus. Toyenci3 KeHICTIK aifHBIMaJbICBIHA KaTHICTHI JIAMyHOB >Kyifeci TYpiHZAEri JKoHE YyaKbIT alHBIMAJIBICHIHA
KaTBICTHl KOIMEPHOATHl TOPOMIANABI TYPIETi BEKTOPJBIK epicTep OarbIThl OoibiHma D muddepenmuangay onepaTopist
CBI3BIKTHI J)KYHe KapacThIpbutasl. JKylieHi aHBIKTaHTBHIH OapIIblK OepinreHaep He yaKbIT alfHBIMAIBICBIHAH KOIIEPHOATH TOye i,
He oJapiaH Tayenci3 Gomansl. JKyleHiH aBTOHOMIBIK KaF[aifbl OYpBIHFBI KYMBICTapAa KapacTeIpsUFaH. by skarmaiina xyieni
AHBIKTANTBIH Keifbip OepinreHnepre yakpIT aHHBIMAIBICBIHAH TOYeNAl KO3IBIPTKEI OepinreH. ParuoHanmsl emmeHOSHTIH
JKUUTIKTEPAIH JKEKEIEHIeH IIEPUOATHI KO3FAIBICTAPBIHBIH CYHNEPIIO3HIMACH TYPIHAETi )KyHe apKbUIbl CHIATTalFaH i3AeNiHmi
KO3FaJIbIC Typajbl CYpaK 3epTTeineni. bacrankel ecentep xoHe KO3FAIBICTAPBIH KOIIEPHOATHUIBIFEI Typallbl €CeNTep 3epTTeNe .
Ecenrtiy memimin aHbIKTay Ke3iH/e XKyiie OacTankbl HYKTeeH IIBIFATHIH XapaKTepPUCTUKAa MaHAMbIHAA HHTETpallaHaThIHEL, OaH
KeifiH GacTamksl OepiireHaep XapakTepUCTHKAIBIK JKYHEeHIH OipiHIII MHTerpanfapbiMeH aybICTHIPBUIATHIHBI Oenrini. CoHbIMEH
I37eTIHAl MenriM KeJaeci KOMIOHEHTTepACH Typajasl: D omepaTOpbIHBIH XapaKTepUCTHKAJIBIK KYHECIHIH XapaKTepUCTUKAChl MEH
OipiHIN MHTETpalgaphl, XXKyHeHiH 0oc Mylleci MEH MaTpHIaHTHl. Byl KOMIIOHEHTTEepHiH 3epTTeNyIli >KyHeMeH CHIIaTTaJFaH
KO3FaJIBICTBIH KOIIIEPUOATHUIBIK TaOUFATHIH ally Ke3iHJe MaHbI3Ibl MarblHACHI Oap OGONATHIH IEPUOATH XKOHE IEPHOATH eMecC
KYPBUIBIMIIBIK Kypaymsuiapsl Oonansl. Illemimal  epexmeneHreH KeNmeprHoATH Kypaylibulap apKbUIBl CHIIATTay bl MICIIIMHIH
KOIMEPHOATHUIBIK KYPBUIBIMBI en aTaiFaH. O keIl alHBIMAIBIIEl ePHOIb! (PYHKIUSIIAp MEH Oip alfHBIMAJIBUIBI KBa3HIICPHOITHI
(yHKIMSUIApBIHBIH - OaiimaHbeicel Typansl bopnblH TaHBIMan TeopeMachl HerisiHAe jxy3ere acaasl. CoOHBIMEH, JKyitenepai
AHBIKTAITBIH OepiureHnepi KO3IBIPBUIFAH JKarjaiia OIpTeKTi jkoHe OipTekci3 >KYHelmepiiH >Kalmbl >KOHE KeIepHOITHI
HICIIIMJIePIiHIH KOIEepHOATH KYPBUIBIMBI HAKTHI 3epTTenred. Ocputaiima D onepaTOpbIHEIH HOJIJAEpl MEH XKYHEHIH MaTpHUIaHThHI
3epTTenreH. bBipTekTi jkoHe OipTekci3 »KyifenepiiH KeNmepHoATHl HIemiMIepiHiH Oap Ooiysl koHe OonMaysl IIapTTapbl
TaralbIHAJIFaH.

Tyiiin ce3gep: Kemmepuonrsl memriM, aBTOHOMABIK JKyie, nuddepeHnmannay omnepaTopsl, JIAIIyHOB BEKTOPIBIK epici,
KO3JIBIPTKBI.
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UCCJIEJOBAHUE MHOT'OITEPHOUYECKHAX PEIIEHUMA BO3MYIIIEHHBIX JINHENHBIX
ABTOHOMHBIX CUCTEM C OIIEPATOPOM JJU®PEPEHIIUPOBAHMUSA 110 BEKTOPHOMY I1OJIIO

Annotanusi. PaccmatpuBaercst juHelHas cucrema ¢ oneparopomauddepenpoBannss D 1o HanpaBIeHUIM
BEKTOPHBIX MOJEH BHJA CUCTEeMBbl JISMyHOBa OTHOCHTENBHO HPOCTPAHCTBEHHBIX HE3aBHCUMBIX MEPEMEHHBIX U
MHOTOINEPUOIUYECKOTO TOPOUJAIBHOIO BUAA OTHOCUTENIBHO BPEMEHHBIX IE€PEMEHHBIX. Bce BXOJHBIE NaHHbBIE
CHCTEMBI JINOO MHOTONEPUOMYHO 3aBUCAT OT BPEMEHHBIX NEPEeMEHHBIX, JIMOO OT HUX HE 3aBUCST. ABTOHOMHBIN
Cilyyail CHCTEMBI paCCMOTpPEH B Hamlel paHHel pabore. B naHHOM ciiydae HEKOTOpBIE BXOJIHBIC JaHHBIE MOIYYMIN
BO3MYIIEHHS, 3aBUCAIIME OT BPEMEHHBIX MNepeMeHHbIX. Mcciemyercs BOHNpoC O MPEACTABICHMHM HCKOMOIO
JIBUDKEHUSI, OMKCAHHOTO CUCTEMOM B BHJE CYNEPIO3ULHUM OTACIbHBIX MEPUOJUUECKUX ABMKEHUN PallMOHATIBHO
HECOU3MEPUMBIX 4acTOT. M3ydaroTcss HaualbHbIE 3aJaud U 3aa4d O MHOTONEPHOAMYHOCTH ABM>KeHUH. M3BecTHO,
YTO NpHU ONPEAEICHUU PELICHUH 3a/1a4 CUCTeMa MHTETPUPYETCs BAOJb XapaKTEPUCTUK, HCXOASIIUX U3 HAYAIbHBIX
TOYEK, a 3aTeM, HavyaJbHbIC JaHHbIC 3aMEHSIOTCS IEPBBIMH MHTErpajlaMH XapaKTEPUCTUYECKHX CHCTEM. TakuM
00pazoM, HMCKOMOE pEUIEHHE COCTOMT W3 CIIAYIONIMX KOMIIOHEHTOB: XapaKTEPHCTHK W IEPBBIX HHTErpajoB
XapaKTepPUCTHIECKUX CHCTEM oreparopa D, MaTpUIlaHTa U CBOOOIHOTO YjeHa CaMOl CHCTEMBI. JTH KOMIIOHEHTEHI, B
CBOIO OYepeAb, UMEIT MNEPHUOAUUYECKHE M HENEPUOJUYECKUE CTPYKTYpHBIE COCTaBISIOIIUE, KOTOPBIE UMEIOT
CYIECTBEHHOE 3HAYEHUE NPH PACKPBITHH MHOIONEPUOJUYECKOM NMPHUPOAB ABMKEHHH, ONUCAHHBIX HCCIERLyeMOI
cucremoil. IlpencraBineHue pemieHuss C  BBLACICHHBIMM MHOIONEPUOJUYECKUMHU COCTABISIOIIMMU HAa3BaHO
MHOTONEPUOIUIECKON CTpyKTypol pemeHus. OHO peanusyeTrcs Ha OCHOBE M3BECTHOW TeopeMbl bopa o cBs3u
NepruoaANYecKol (YHKIIMHM OT MHOTHX NEPEMEHHBIX M KBA3UIEPHOINUECKON (QyHKIMU OmHOW mepemMeHHo#. Takum
oOpa3zomM, Oojee KOHKPETHO, HCCIEAYIOTCS MHOTOINEPHOIMYECKHE CTPYKTYPHl OOIIMX W MHOTONEPHOANYECKUX
peleHN OMHOPOJHBIX U HEOJHOPOAHBIX CUCTEM C BO3MYILIEHHBIMH BXOJHBIMU JaHHBIMU. B TakoM ngyxe n3ydarorcs
Hynu omneparopa D W MaTpULIAHT CHUCTEMBL. YCTAHABIMBAIOTCA YCIOBHUS OTCYTCTBUS M CYIECTBOBaHUS
MHOTONEPUOIUIECKUX PEILIEHUH KaK OJHOPOJHBIX, TAK U HEOAHOPOIHBIX CUCTEM.

KiroueBble ciioBa: MHoromneproauyeckoe pelieHre, aBTOHOMHas CHCTeMa, orepaTop AudQepeHpoBaHys,
JIsmyHOBa BEKTOpPHOE MOJIE, BO3MYILEHHE.
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