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RESEARCH OF MULTIPERIODIC SOLUTIONS OF PERTURBED 
LINEAR AUTONOMOUS SYSTEMS WITH DIFFERENTIATION 

OPERATOR ON THE VECTOR FIELD 
 
Abstract. A linear system with a differentiation operator D with respect to the directions of vector fields of the 

form of the Lyapunov's system with respect to space independent variables and a multiperiodic toroidal form with 
respect to time variables is considered. All input data of the system multiperiodic depend on time variables or do not 
depend on them. The autonomous case of the system was considered in our early work. In this case, some input data 
received perturbations depending on time variables. We study the question of representing the required motion 
described by the system in the form of a superposition of individual periodic motions of rationally incommensurable 
frequencies. The initial problems and the problems of multiperiodicity of motions are studied. It is known that when 
determining solutions to problems, the system integrates along the characteristics outgoing from the initial points, 
and then, the initial data is replaced by the first integrals of the characteristic systems. Thus, the required solution 
consists of the following components: characteristics and first integrals of the characteristic systems of operator D, 
the matricant and the free term of the system itself. These components, in turn, have periodic and non-periodic 
structural components, which are essential in revealing the multiperiodic nature of the movements described by the 
system under study. The representation of a solution with the selected multiperiodic components is called the 
multiperiodic structure of the solution. It is realized on the basis of the well-known Bohr's theorem on the connection 
of a periodic function of many variables and a quasiperiodic function of one variable. Thus, more specifically, the 
multiperiodic structures of general and multiperiodic solutions of homogeneous and inhomogeneous systems with 
perturbed input data are investigated. In this spirit, the zeros of the operator D and the matricant of the system are 
studied. The conditions for the absence and existence of multiperiodic solutions of both homogeneous and 
inhomogeneous systems are established. 

Keywords: multiperiodic solutions, autonomous system, operator of differentiation, Lyapunov’s vector field, 
perturbation. 

 
1. Introduction. The foundations of the method used in this note were laid in [1, 2], which were 

further developed in [3–14] and applied to the study of solutions different problems in the partial 
differential equations [15, 16]. These methods with simple modifications extend to the study solutions of 
problems of the differential and integro-differential equations of different types [1-16], in particular, 
problems on multi-frequency solutions of equations from control theory [17]. Many oscillatory 
phenomena are described by systems with a differentiation operator with respect to toroidal vector fields, 
and new methods based on the ideas of the Fourier [18], Poincaré-Lyapunov and Hamilton-Jacobi 
methods [19, 20] appear to establish their periodic oscillatory solutions. The methods of research for 
multiperiodic solutions are successfully combined by methods for studying solutions of boundary value 
problems for equations of mathematical physics. Elements of the methods of [1, 2] can easily be found in 
[21–25], where time-oscillating solutions of boundary value problems are studied by the parameterization 
method. 
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As noted above, the considered system of partial differential equations along with multidimensional 
time contains space independent variables, according to which differentiation is carried out to the 
directions of the different vector fields. The autonomous case of this system was considered in [15, 16], 
where differentiation with respect to time variables was carried out in the direction of the main diagonal of 
space, and the free term of the system was independent of time variables. In this case, these parameters of 
the systems received perturbations depending on time variables. In the note, the method for studying 
multiperiodic structures of general and multiperiodic solutions is developed, the conditions for the 
existence of a multiperiodic solution are established, and its integral representation is given. 

We consider the system of linear equations 
  ,, tfAxDx                                                          (1.1) 

with differentiation operator 

,,,



 











 gI
t

aD                                         (1.2) 

where   ,, R    m
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are vector differentiation operators;

 22 ,..., IIdiagI   is a matrix with l -blocks, 2I  is symplectic unit of the second order, 

 l ...,,1  is a constant vector,  ,,..., 221 IIdiagI l 
),,(),(),( ),...,( 1 ttt aaaa m   )()()( ),...,( 1  gggg l   are vector functions, ,  

is the 

sign of the scalar product of vectors; A  is a constant nn -matrix, ),,(  tff   is n-vector-

function of variables lm RRRt 2),,(   . 

The vector function ),,(  tx  is called ),(  -periodic with respect to ),( t  if the identity 

,,),,(),,,(),,( 2 mlm ZqRRRttxqtx    

was fulfilled, where ,... ZZZ m   Z  is the set of integers, ),...,( 1 m   is the vector-period, 

and the periods m ,...,, 10   are rationally incommensurable positive constants: 

).,0,(,,,0 mkjZqqqq kjkkjj    

The motion described by a ),(  -periodic with respect to ),( t function ),,(  txх   is called a 

multiperiodic oscillation. 
The main objective of this note is to determine the multiperiodic structures of solutions of the initial-

multiperiodic problems associated with the system (1.1) - (1.2). 
 The objective was partially been touched upon by the authors in [15, 16], when the problem of 

multiperiod solutions of the autonomous system of the form (1.1) - (1.2) was considered, where time 
variables t,  did not explicitly enter. 

2. Multiperiodic structure of zeros of the differentiation operator D . We introduce the equation 

 0Du     (2.1) 
with the required scalar function ),,(  tuu  , where D  is the differentiation operator with respect to 

),,(  t  of the form (1.1). 
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The solutions of equation (2.1) are called the zeros of the operator D . 
Suppose that 1) the vector function ),( ta   has the property of smoothness with respect to 

mRRt ),(  of order )1...,,1,0(),0( e : 

,),(),(),( ),0(

,

mme

t ZqRRCtaqta                             
 (2.2) 

2) positive constants l ...,,1  rationally incommensurable: 

),,0,(,,,0,0 22 ljiZqqqqqq jijijjii                                 (2.3) 

therefore, numbers ljjj ,1,2 1    are also incommensurable. 

3) vector-functions     ljg jjj ,1,)(),(    are continuous and 
j -periodic: 

 
        ,,1,0 ljRCgg jjj  

                                         
(2.4) 

where lkk ,1,   and ljj ,1,   are incommensurable positive constants. 

It follows from condition (2.2) that the vector field 

 ta
d

dt
,




                                                                
(2.5) 

determines the characteristic 

 ,,, 00 tt                                                              (2.5¹) 

emanating from any initial point   mRRt 00 , , and moreover, it has the properties: 

),,,( 00 tt                                                           (2.5²)  

,,),,,()),,(,,( Rtt                                    (2.5³) 

,,),,(),,( 00 mZqqtqt                               (2.5⁴) 

   .)(,0),,( )(0 me

t RCtVtDV                                      (2.5⁵) 

Obviously,  ),,( 0 tvu   satisfies the initial condition 

 .)( )(
0

me

t RCtvu 
                                                     

(2.1') 

Properties (2.5²) - (2.5⁵) of the characteristic (2.5¹) of the vector field (2.5) are known from [2]. Hence, 
we will not dwell on their justification. 

The solution 

   ),,(,, 00 tvtu                                                     (2.6) 

of the problem (2.1) - (2.1 ') is called the zero of the operator D  with the initial condition (2.1'). 

Lemma 2.1. Let condition (2.2) be satisfied. Then under the condition 

      mme

t ZqRCtvqtv  ,)(                                        (2.7) 

the zeros (2.6) of the operator D  with the initial data (2.1') have the multiperiodicity property of the form 

.),,,(),,( 00 mZqtuqtu                               (2.8) 

The proof of identity (2.8) follows from the structure of zero (2.6), property (2.5⁴) which is a 
consequence of condition (2.2), and from condition (2.7). 

Note that property (2.8) represent the diagonal  -periodicity  tu ,,0   with respect to   ,0  and 

 -periodicity with respect to t . 
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In particular, when a function ),,( 0 t is  -periodic with respect to   or ,0  then the zeros (2.6) 

of the operator D  under the conditions of the lemma are ),(  -periodic with respect to ),( t . 

The vector fields 

ljgI
d

d
jjj

j ,1),(2  



                                            
(2.9) 

in scalar form have the form 
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Obviously, the matricants ljZ j ,1),(   of the systems (2.10), and, consequently, the systems (2.9), 

are determined by periodic relations 

ljZ
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jj

j ,1,
cossin
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
                                      

(2.11) 

with periods ljjj ,1,2 1   . The conditions 

  .,1,0)0()(det ljZZ jjj 
                                         

(2.12) 

are satisfied by virtue the incommensurability k  and
j . Indeed 

    0cos12)0()(det  jjjjj ZZ  , 

since ljq jjj ,1,0   . 

 Then systems (2.9) allow for 
j -periodic solutions 

  .,1,)()()()()( 1111 ljdssgsZZZz
j

jjjjjj  








                   

(2.13) 

Consequently, the general solutions 
j  of the systems (2.9) have the form 

       ,,1,000 ljzzZ jjjjj  
                                  

(2.14) 

where the matricants   ljZ j ,1,   and solutions ljz j ,1),(   have periodicity properties 

    ,,1, ljZZ jjj  
                                               

(2.15) 

    .,1, ljzz jjj  
                                                 

(2.16) 

We must introduce new time variables ljs jj ,1,,   and space variables ljhj ,1,   related by 

relations 

       ,,1,,, 000000 ljzzssZzssh jjjjjjjjjjjjj  
               

(2.17) 

in order to represent solutions (2.14) using periodic functions with incommensurable periods 

ljjj ,1,,  , where   000 , jjjj sszz   are the initial values of the variables ljs j ,1,  . 

Obviously, the multiperiodic functions (2.17) present the solutions (2.14) under 
00,   jjj ss , moreover, they satisfy equations 
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ljghI
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j
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j ,1)(2 








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(2.18) 

with the initial conditions 

.,1,0
0

ljh jssj
jjj





                                                  

(2.18°) 

By virtue of the properties (2.15) and (2.16) of the matricants )(jZ  and the solutions )(jz , the 

functions (2.17) have the properties of multi-periodicity 

      .,1,,,,,,, 000 ljshshsh jjjjjjjjjjjjjj  
              

(2.19) 

Thus, we obtained from systems of equations (2.9) to systems of equations (2.18) with initial 
conditions (2.18°) by introducing new time variables. 

We get the equations (2.9) and their solutions (2.14) from the systems of equations (2.18) - (2.18°) by 

substitution 00,   jjj ss  conversely. 

 The close relationship between the functions   jj   and  jjjj shh ,  of the form  

   ,, jj h
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with   jj s  leads to a transition from the differentiation operator D  to the differentiation operator 
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(2.20) 

where ),,...,( 1 lsss  ),,...,( 1 l  )1,...,1(e  – l -vector, ),,...,( 1 lhhh 
 

 ,, jjjj shh 

,,1 lj  



































l

l

l

l hhh

s

h

s

h

s

h


...,,,...,,

1

1

1

1 . 

Further, we obtain the characteristic 
       zzZ  000

                                        (2.21) 

of the matrix-vector equation 

),(



gI
d

d


                                                     
(2.22) 

which is characteristic for equation (2.1) with respect to space variables, based on the coordinate data (2.9) 

- (2.16), where       ,,...,1  lZZdiagZ        ,,...,1  lzzz    00

1

0 ,..., l  . 

We have the first integral 

         ,,0000  zzZ                              (2.23) 

of equation (2.22) from the equation of characteristic (2.21). 

Therefore, we obtain the identity 
    .,,,0,, 000  D                                (2.24) 

Then we have the solution 
   ,),,(,, 00  wu                                      (2.25) 

of equation (2.1) satisfying the initial condition 

 .)( )(
0

le RCwu 
 

                                      
(2.1'') 

for any differentiable function    le RCw )(

  . 
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Indeed, since 


D
w

Du 



 , by virtue of (2.24) we have 0Du . Thus, (2.25) with the condition 

(2.1'') is the zero of the operator D . 
Further, we have a vector function 

        ,),(, 000000  zszssZzzssh                      (2.26) 

satisfying the characteristic equation of the operator D  of the form 

)(


ghI
h

s

h









                                                   
(2.27) 

with the initial condition 

,0
0





 ss

h  

based on our analysis related to relations (2.17) - (2.19) for studying the multi-periodic structure of 
characteristic (2.23), where       ,,...,11 llggg         ,,...,11 llzzz    
      ,,...,11 ll sZsZdiagsZ   ),,...,( 1 lhhh   ,)(),(, 0000 szzsshh jjjjjj   ,,1 lj 
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1

1 . 

Obviously, by virtue properties (2.15), (2.16) and (2.19), the matrix  sZ  is periodic with period 

),...,( 1 l  , and the solution  z  with period ),...,( 1 l  . 

The first integral of the equation (2.27) is determined from the equation of characteristic (2.26) by the 
relation 

 .)(),(, 000  zszssh   

It's obvious that 

  .,0)(),(, 0

00 



 ss

hzszsshD
                      

(2.28) 

Moreover, we have 

       ,0)(),(,)(),(, 0000 



 


 zszsshD
hw

zszsshwD  

for any differentiable function  w , by virtue of (2.28), at that 

    .)(),(,
0

00 


wzszsshw
ss



 

Thus, 
    )(),(,,,, 000  zszsshwssu                                (2.29) 

is the zero of the operator D , that under eses ~,~ 00    it becomes the   ,,0u  zero of 

the operator D , where )1...,,1(~ e  is a l -vector. 

Lemma 2.2. Let conditions (2.3) and (2.4) be satisfied. Then the zeros (2.25) of the operator D  with 
the initial condition (2.1'') have a multiperiodic structure of the form (2.29) with the vector function 
(2.26), at that 

   

   .,,)~(),~(,~~

,,,,,,

000

0

~
~

0

00













ezezeeh

ussu
es

es

                            

(2.30) 
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Theorem 2.1. Let conditions (2.2) - (2.4) be satisfied. Then the solution   ,,,0 tu  of equation 

(2.1) with the initial condition 

   lmee

t RRCtuu 


)~,ˆ(

,

0 ,0 


                                            
(2.1°) 

is determined by the relation 
      ,,,,,,,,, 0000  tutu                                  (2.31) 

which under the conditions 
   ,,,,, 00 tt                                                    (2.32) 

    mZqtuqtu  ,,, 00                                          (2.33) 

has a multiperiodic structure with respect to   ,,, st  with period   ,,,  of the form 

         ,,,,,,,,,;,, 000000  zszsshtusstu               (2.34) 

where the vector-function  ,, zsh  has the form (2.26), )1...,,1(ˆ e  is m -vector, )1...,,1(~ e  is 

l -vector, moreover 

 .,,,0

~
~
00



 tuu

es
es 




                                                  
(2.35) 

Proof. The form of solution (2.31) of the initial problem (2.1) - (2.1°) follows from the general theory 
of the first-order partial differential equations. Special cases of it are given in Lemmas 2.1 and 2.2. 

The multiperiodic structure (2.34) of the solution (2.31) is also contained in the indicated lemmas; and 
the multiperiodicity is easily verified under the additional conditions (2.32) and (2.33). 

The statement (2.35) follows from (2.30). 

Note that,   ,,,,,, 00 sstuu   is the solution of the equation 0uD  with the 

differentiation operator D . 
The proved theorem is the multiperiodic structure of the zeros of the differentiation operator D . 
In conclusion, we note that if the conditions (2.32) and (2.33) do not fulfill, then the representation 

(2.34) remains the multi-periodic structure of the solution (2.31). But then a definite structure (2.34) does 
not possess the periodicity property with respect to  , t . 

3. The multiperiodic structure of the solution of a homogeneous linear D -system with constant 
coefficients. We consider a homogeneous linear system 

AxDx                                                                      (3.1) 

with a differentiation operator D  of the form (1.2) and a constant nn -matrix A . 
We will put the problem of determining the multiperiodic structure of the solution x of the system 

(3.1) with the initial condition 

   ., )~,ˆ(

,0

lmee

t RRCtux 
 


                                            

(3.1°) 

To this end, we begin the solution of the problem by studying the multiperiodic structure of the 
matricant 

    AX exp                                                             (3.2) 

of the system (3.1). 
We need the following lemmas to that end. 

Lemma 3.1. If     rjff jjj ,1,    is some collection of the periodic functions with 

rationally commensurate periods: 
jkkj r /  is a rational number for rkj ,1,  , then for these 

functions exist a common period  : 

    .,1, rjff jj    
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Indeed, by virtue of rational commensurability exist integer natural numbers 
rqq ,...,1
 such that

  rrqq ...11
, which is the required period. 

Lemma 3.2. If the real parts of all eigenvalues equal to zero and all the elementary divisors are 

simple of the constant matricant     IY exp , then all the elements of the matrix I  are periodic 

functions. 

Proof. By the conditions of the Lemma 3.2, the eigenvalues are   ,,1, rjibI jj   where 

1i  is the imaginary unit; the constants 
jb  are either equal to zero or nonzero. If it is nonzero, then 

each eigenvalue   jj ibI   corresponds to one or more Jordan cells 
jJ  of the form 

.
0

0







 


j

j

j b

b
J  

Then the matricant has the form 

    ,...,, 11  KeediagKY rII                                               (3.3) 

where if 0jb , then 0jI  and if 0jb , then 
jj JI  , moreover 

 ,0,
cossin

sincos
)( 







 
 j

jj

jjJ

j b
bb

bb
eY j




 

                                       

(3.4) 

K  is a matrix of reduction I  to the actual canonical form   1

1 ...,,  KIIdiagKI r
. 

We have a complete proof of the Lemma 3.2 from relations (3.3) and (3.4), and the periods of the 
elements of the matrix  Y  are determined as 11

1 2,...,2
1

 


  jj bb  on the basis of the Lemma 

3.1, taking into account the commensurability of the periods rrjbj   ,,1,2 1  Periods  ,...,1  

are rationally incommensurable constants. 

Further, cells   kkj rjY
k

,1,   of the form (3.4) having the periodicity property with a period k  

will be considered as cells depending on the variable k  : 

    .,1, kkkjkkj rjYY
kk

 
                                              

(3.5) 

Representing each cell (3.4) using the new variables  ,...,1
 in accordance with condition (3.5), 

from the expression of the matricant (3.3) we obtain a multiperiodic matrix     ,...,1TT 
 
 with 

period   ,...,1 . 

Since 

   ,kjjkj

k
kk

YJY 






 
 

the matrix  T  satisfies the equation 

   , 
TITD                                                              (3.6) 

where the operator D


 is determined by 

,...,
1  











 

eD

                                            

(3.7) 

)1...,,1(e


 is a  -vector. 

Obviously, under  e
   we have     YeT 

 and 
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       .





YIeTIeT
d

d
Y

d

d
 

                                       
(3.8) 

Thus, the multiperiodic matrix  T  defines the multiperiodic structure of the matricant  Y : 

    .,...,
...1

1 





 TY
                                            

(3.9) 

Lemma 3.3. The matricant  Y  of the system (3.8) under the conditions of Lemma 3.2 has a multi-

periodic structure in the form of a matrix    ,,...,1  TT 
 which satisfies the system (3.6) with the 

differentiation operator (3.7) and along the characteristics  e
   of the operator D


 turns into  Y , 

in other words, these matrices are related by the relation (3.9). 
It’s known that from the course of linear algebra the matrix A  can be represented in the form 

        ,1111 IRKibEKKaJKKibaJKKJKA    

where K  is some non-singular matrix for reducing the matrix A  to Jordan normal form 
      rrJJdiagJ  ...,,11  with Jordan's 

jn -cells  jjJ   corresponding to eigenvalues 

rjiba jjj ,1,  ;   1 KaJKR  is the matrix,  aJ  is matrix obtained from the Jordan 

form  J  by replacing the eigenvalues 
j  with their real parts rja jj ,1,Re   , 

  1 KibEKI  is the matrix,    ,...,,11 rr EibEibdiagibE   ,,1,Im rjb jj    
jE  is the 

unit jn -cells, rj ,1 , moreover, the matrices R  and I  are commutative: .IRRI  . Therefore, 

 RIRIA eeee  
, otherwise, the matricant (3.2) can be represented as 

     , ZYX                                                (3.10) 

where     IY exp ,     RZ exp , moreover, along with property (3.8),  Y  satisfies the 

equation 

      .RYAYY
d

d 



                                               

(3.11) 

Indeed, we making the replacement 
 ZYX   

in the equation 

AXX                                                                (3.12) 
obtain the equation 

      ZY
d

d
AYYZ 



   


1 . 

Then, we obtain the identity (3.10) taking into account that RZZ  , where     RZ exp . 

The identities (3.8) and (3.11) establish the connection of the matricant     IY exp  with the 

triple of matrices IRA ,, ; moreover, the matrix I  satisfies the conditions of Lemma 3.2. Therefore, 

according to Lemma 3.3, the multiperiodic structure of the matricant     AX exp , by virtue of 

equality (3.10), is determined by a matrix   
,X  of the form 

      ,,...,,...,,, 11


  ReTXX 

                                
(3.13) 

which is connected by the matricant  X , by relation 
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   ., 


XX
e


 



                                                   
(3.14) 

Thus, the following theorem is proved. 
Theorem 3.1. In the presence of complex eigenvalues of the matrix A , the matricant (3.2) of the 

system (3.12) has a multiperiodic structure defined by the matrix (3.13) and relations (3.6) - (3.9), and it 

along the characteristics  e
   of the operator D


 satisfies condition (3.14). The matrix  T  turns 

into a constant matrix in the absence of complex eigenvalues. 
Now the solution of the objectives set can be formulated as Theorem 3.2. 
Theorem 3.2. Let conditions (2.2) - (2.4) be satisfied. Then the solution   ,,,0 tx  of the problem 

(3.1) - (3.1°) defined by relation 
          ,,,,,,,, 000 tuXtx                             (3.15) 

has a multi-periodic structure in the form of a vector-function 

           ,,,,,,,,,,,,, 00000  zszsshtuXsstx  
        (3.16) 

that satisfies equation 

xAxD
                                                                   (3.17) 

with the differentiation operator 

,DDD


                                                               (3.18) 
defined by relations (2.20) and (3.7). 

Proof. The representation (3.15) is known from [2], and (3.16) follows from the proved Theorems 2.1 
and 3.1. The identity (3.17) can be verified by a simple check. 

Now we investigate the question of the existence of nonzero multiperiodic solutions of the systems of 
equations (3.1).We begin the study with the simplest cases. 

We consider a canonical system with a single zero eigenvalue 

,...,,,0 11
21

 n
n x

d

dx
x

d

dx

d

dx


 

which in the vector-matrix form has the form 

,xE
d

dx


                                                                 
(3.19) 

where E  is the sub-diagonal unit oblique series of the n-th order, )...,,( 1 nxxx  . 

We introduce a triangular matrix )(0 X  with elements of the form of power functions:  


























1...
)!2()!1(

............

0...1

0...01

)(
21

0

nn

X
nn 


  

and an arbitrary constant vector )...,,( 1 nccc   to represent the general solution x  of the system (3.19). 

Then the general solution of the system (3.19) is represented in the form cXx )(0  . 

It easy to see from the structure of the general solution that system (3.19) admits a one-parameter 

family of periodic solutions 
x  of the form 

,)()( 0

  cXx                                                      (3.20) 

where ),0...,,0(   ncc , 
nc  is an arbitrary parameter. 
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Next, we consider a system of pairs  jj xx  ,  of equations of the form 

,,1,,,, 111
1

1
1 ljxbx

d

xd
xbx

d

xd
xb

d

xd
xb

d

xd
jj

j

jj

j 











 
 

which can be represented using the vector  jjj xxx  ,  in the form 

,,1,, 2212
1 ljxbIxE

d

dx
xbI

d

dx
jj

j 


 

where 2E  is the second-order identity matrix, 
2I  is the second-order symplectic identity matrix, 

0 constb . 
If we introduce a constant block matrix 





























22

22

22

22

2

...

...

.....................

...

...

...

)(

bIEOOOO

ObIEOOO

OOObIEO

OOOObIE

OOOOObI

bJ  

with blocks 22 , EI  and second-order zero blocksO , then the system under consideration with a vector 

)...,,( 1 lxxx   can be represented in the form 

,)( xbJ
d

dx


                                                           
(3.21) 

which we call a canonical system with a single pair of purely imaginary conjugate eigenvalues 
),( ibib  . 

We introduce a diagonal block matrix 

   )(...,),( 22  TTdiagT   

with a block )(2 T  of the form 








 






bb

bb
T

cossin

sincos
)(2  

and a triangular block matrix with elements of the form of power functions: 




























22

2

2

1

22

2

...
)!2()!1(

............

...

...

)(

EE
l

E
l

OEE

OOE

Y
ll 


  

to represent the general solution x of the system (3.21). 
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Then the matricant )(X  of the system (3.21) can be represented as )()()(    YTX , 

and the general solution )(x  is determined by the relation 

cXx )()(    

with an arbitrary constant vector     .,1,,,...,,1 ljcccccc jjjl   

We obtain easily a family of 
12  b -periodic solutions )(x by parameters lc  and lc   of the 

form 
  cXx )()(                                                          (3.22) 

with a constant vector    llll ccccc  ,,,0...,,0  from the structure of the general solution 

Now, by replacing Kzx   with a non-singular constant matrix K , we reduce the system (3.1) to the 
canonical form 

,)(,)( 1 AKKAJzAJDz                                                (3.1') 

which consists of subsystems in accordance with Jordan's cells of the matrix А . 
Obviously, systems (3.1) and (3.1') are equivalent with respect to the existence of multiperiodic 

solutions. 
It is also clear that the system (3.1') has subsystems of the form 

,11 zEDz                                                              )1.3( 1
  

or 

,)( 22 zbJDz                                                        )1.3( 2
  

respectively with matrices similar to the matrices of systems (3.19) and (3.21), in the presence of zero or 

purely imaginary eigenvalue. Obviously, nonzero solutions of (3.20) and (3.22) satisfy the systems )1.3( 1
  

and )1.3( 2
 , respectively 

Consequently, in the cases under consideration, system (3.1') allows nonzero periodic solutions 

)(z . Then )()(    xKz  is a periodic solution of the system (3.1). 

Thus, the following theorem is proved. 
Theorem 3.3. Under the conditions of the Theorem 3.2, the system (3.1) allowed nonzero 

multiperiodic solutions enough for the matrix А  to have at least one eigenvalue )(A   with the real 

part 0)(Re A  equal to zero. 

We have the following theorem from the theorem 3.3, as a corollary. 
Theorem 3.4. Under the conditions of the Theorem 3.3, the system (3.1) did not admit the 

multiperiodic solution other than trivial, it is sufficient that all eigenvalues of the matrix А  have nonzero 
real parts. 

Since the system (3.1) is ),(  -periodic, of particular interest is the question of the existence of its 

nonzero multiperiodic solutions with the same periods. 
The general solution x of the system (3.1) can be represented in the form 

),,,()(),,(  tuXtx                                                (3.23) 

where ),,(  tuu   is the zero of the operator D  with the general initial condition for 0  

),,(),,0(),,0( 0  tututx   

  AX exp)(   is the matricant of the system. 

Among the zeros of the operator D  there exist multiperiodic ones, in particular, constants by the 
Theorem 2.1. 
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Theorem 3.5. Under the conditions (2.2) - (2.4), the system (3.1) had ),(  -periodic with respect 

to ),( t  solutions of the form (3.23) corresponding to the multiperiodic zero of the operator D  with the 

same periods, it is necessary and sufficient that the monodromy matrix )(X  satisfies condition 

  .0)(det  EX                                                         (3.24) 

Proof. Under the conditions of the theorem, its justice is equivalent to the solvability of equation 
uXuX )()(                                                          (3.25) 

in the space of ),(  -periodic with respect to ),( t  zeros ),,(  tuu   of the operator D . 

We arrive at the solvability of the system of equations 

  ,0)(  uEX   

which is equivalent to the condition (3.24) taking into account the properties of the matricant 
)()()(  XXX   from the system (3.25). 

In conclusion, we note that the fulfillment of condition 
  0)(det  EX                                                     (3.26) 

guarantees the absence of such solutions. 
We also note that condition (3.24) is a sufficient sign of the existence of the nonzero multiperiodic 

solution of the system (3.1). 
Theorem 3.6. Let conditions (2.2) - (2.4) and (3.26) be satisfied. Then the system (3.1) allowed 

nonzero ),(  -periodic solutions of the form (3.23) necessary and sufficient for the functional-

difference equations 

           mZqtuqtuXEXqtu   ,,,,,)(,, 1     (3.27) 

to be solvable in the space of zeros of the operator D . 
Proof. Under the condition (3.26) from the definition of ),(  -periodicity with respect to ),( t  of 

solution (2.23), we have the equation (3.27). We must be to take into account that ),,(  tu  is the zero 

of the operator D  to complete the proof. 
If the equation (3.27) has only zero solutions, then, under the condition (3.26), the system (3.1) does 

not have a nontrivial multiperiodic solution. 
We also note that the fulfillment of the condition 

njAj ,1,0)(Re   

on the non-zero real parts )(Re Aj  of all eigenvalues )( Aj of the matrix А  ensures the fulfillment 

of condition (3.26). 
In conclusion, we note that on the basis of the multiperiodic structures (2.30) and (3.13) the 

characteristics ),,( 0   of the matricant )(X  and by the theorems which proved above, it is easy to 

obtain structures of ),(  -periodic with respect to ),( t  solutions of the system (3.1) expressed in 

terms of variables  ,,,,, ts


. 
4. The multiperiodic structure of an inhomogeneous linear system with operator D. Consider the 

inhomogeneous linear equation 
),,(  tfAxDx                                                       (4.1) 

corresponding to the homogeneous equation (3.1), where the n-vector function ),,(  tf  satisfies 

condition 

     .,,,, )~,ˆ,0(

,,

lmee

t RRRCtfqtf  
                           

(4.2) 
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Assume that the condition (3.26) is fulfilled and we search for the ),(  -periodic with respect to 

),( t  solution ),,(  tx  of the system (4.1) that corresponds to zero ),,(  tu  of the operator D  
possessing the property of multiperiodicity with the same periods ),(   for ),( t . 

Therefore, we have the solution 

            



0

1 ),,(),,,(,,,,, dsstssfsXXtuXtx
            

(4.3) 

with zero     mZqtuqtu  ,,,,,   of the operator D  having the property 

    mZqtxqtx  ,,,,,  . 

Then the solution (4.3) has another representation 

   
            .),,(),,,(,,,,,

0

1


 


 dsstssfsXXtuXtx
  

(4.4) 

Further, we obtain 

    

          

    ,),,(),,,(,

),,(),,,(,,,

0
1

0

1111





 


















dsstssfsX

dsstssfsXXXtx

      

(4.5) 
eliminating from identities (4.3) and (4.4) the unknown zero ),,(  tu  of the operator D , where the 

reversible of the matrix      11   XX  follows from condition (3.26). 
If we accept the notation 

   
 









,0,),,(),,,(,

,0,),,(),,,(,
),,(),,,(,




 s

s

stssf

stssf
stssf  

then formula (4.5) can be represented in a more compact form 

           .),,(),,,(,,, 1111 


 



  dsstssfsXXXtx

        
(4.6) 

where   s  means changes in the variable s  from   to  . Obviously, if the system (3.1) does 
not have multiperiodic solutions, except for zero, then the solution (4.6) of the system (4.1) is a unique 
multiperiodic solution. 

Further, we have solutions 

      
    












 



dzzshtfX

XeXtsx

)(),(,),,,(,

,,,,,,,

1

111 

                            

4.7) 

of the equation 

),,(  tfxAxD  
 

with the differentiation operator (3.18)  from representation (4.6) on the basis of multiperiodic structures 
(2.30) and (3.13) of the quantity ),,(  s  and )(X . 

Thus, the following theorem is proved. 
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Theorem 4.1. Assume that conditions (2.2) - (2.4), (3.26) and (4.2) are satisfied, and the 
homogeneous system (3.1) does not have multiperiodic solutions except zero. Then the system (4.1) has a 
unique ),(  -periodic solution (4.6) for which the ),,,,(  -periodic with respect to 

),,,,( ts  
 structure (4.7) satisfies equation (4.8) with the differentiation operator (3.18). 

In conclusion, note that we can derive the multiperiodic structure of the general solution (4.3) of the 
system (4.1) similarly to formula (4.7). 

Conclusion. A method for studying the multiperiodic structure of oscillatory solutions of perturbed 
linear autonomous systems of the form (1.1) - (1.2) was developed. The main essence of the method for 
studying the multiperiodic structures of solution of the system under consideration is a combination of the 
known methods [1-3] with the methods used in [15, 16] for the autonomous systems. In this case, some 
system input received perturbations depending on the time variables τ, t. In conclusion, the sufficient 
conditions for the existence of the multiperiodic solutions of linear systems (1.1) - (1.2) with the 
differentiation operator D in the directions of a toroidal vector field with respect to time variables and of 
the form of Lyapunov's systems with respect to space variables were established. Moreover, relation (4.6) 
is an integral representation of the multiperiodic solution of the system, and (4.7) determines its 
multiperiodic structure. We also note that the integral representation given here differs from the analogue 
given in [15, 16]. 
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ВЕКТОРЛЫҚ ӨРІС БОЙЫНША ДИФФЕРЕНЦИАЛДАУ ОПЕРАТОРЛЫ ҚОЗДЫРЫЛҒАН СЫЗЫҚТЫ 

АВТОНОМДЫҚ ЖҮЙЕЛЕРДІҢ КӨППЕРИОДТЫ ШЕШІМДЕРІН ЗЕРТТЕУ 
 

Аннотация. Тəуелсіз кеңістік айнымалысына қатысты Ляпунов жүйесі түріндегі жəне уақыт айнымалысына 
қатысты көппериодты тороидалды түрдегі векторлық өрістер бағыты бойынша D  дифференциалдау операторлы 
сызықты жүйе қарастырылады. Жүйені анықтайтын барлық берілгендер не уақыт айнымалысынан көппериодты тəуелді, 
не олардан тəуелсіз болады. Жүйенің автономдық жағдайы бұрынғы жұмыстарда қарастырылған. Бұл жағдайда жүйені 
анықтайтын кейбір берілгендерге уақыт айнымалысынан тəуелді қоздыртқы берілген. Рационалды өлшенбейтін 
жиіліктердің жекеленген периодты қозғалыстарының суперпозициясы түріндегі жүйе арқылы сипатталған ізделінді 
қозғалыс туралы сұрақ зерттеледі. Бастапқы есептер жəне қозғалыстардың көппериодтылығы туралы есептер зерттеледі. 
Есептің шешімін анықтау кезінде жүйе бастапқы нүктеден шығатын характеристика маңайында интегралданатыны, одан 
кейін бастапқы берілгендер характеристикалық жүйенің бірінші интегралдарымен ауыстырылатыны белгілі. Сонымен 
ізделінді шешім келесі компоненттерден тұрады: D операторының характеристикалық жүйесінің характеристикасы мен 
бірінші интегралдары, жүйенің бос мүшесі мен матрицанты. Бұл компоненттердің зерттелуші жүйемен сипатталған 
қозғалыстың көппериодтылық табиғатын ашу кезінде маңызды мағынасы бар болатын периодты жəне периодты емес 
құрылымдық құраушылары болады. Шешімді  ерекшеленген көппериодты құраушылар арқылы сипаттауды шешімнің 
көппериодтылық құрылымы деп аталған. Ол көп айнымалылы периоды функциялар мен бір айнымалылы квазипериодты 
функцияларының байланысы туралы Бордың танымал теоремасы негізінде жүзеге асады. Сонымен, жүйелерді 
анықтайтын берілгендері қоздырылған жағдайда біртекті жəне біртексіз жүйелердің жалпы жəне көппериодты 
шешімдерінің көппериодты құрылымы нақты зерттелген. Осылайша D операторының нөлдері мен жүйенің матрицанты 
зерттелген. Біртекті жəне біртексіз жүйелердің көппериодты шешімдерінің бар болуы жəне болмауы шарттары 
тағайындалған. 

Түйін сөздер: Көппериодты шешім, автономдық жүйе, дифференциалдау операторы, Ляпунов векторлық өрісі, 
қоздыртқы. 
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ИССЛЕДОВАНИЕ МНОГОПЕРИОДИЧЕСКИХ РЕШЕНИЙ ВОЗМУЩЕННЫХ ЛИНЕЙНЫХ 
АВТОНОМНЫХ СИСТЕМ С ОПЕРАТОРОМ ДИФФЕРЕНЦИРОВАНИЯ ПО ВЕКТОРНОМУ ПОЛЮ 

Аннотация. Рассматривается линейная система с операторомдифференцирования D по направлениям 
векторных полей вида системы Ляпунова относительно пространственных независимых переменных и 
многопериодического тороидального вида относительно временных переменных. Все входные данные 
системы либо многопериодично зависят от временных переменных, либо от них не зависят. Автономный 
случай системы рассмотрен в нашей ранней работе. В данном случае некоторые входные данные получили 
возмущения, зависящие от временных переменных. Исследуется вопрос о представлении искомого 
движения, описанного системой в виде суперпозиции отдельных периодических движений рационально 
несоизмеримых частот. Изучаются начальные задачи и задачи о многопериодичности движений. Известно, 
что при определении решений задач система интегрируется вдоль характеристик, исходящих из начальных 
точек, а затем, начальные данные заменяются первыми интегралами характеристических систем. Таким 
образом, искомое решение состоит из следующих компонентов: характеристик и первых интегралов 
характеристических систем оператора D, матрицанта и свободного члена самой системы. Эти компоненты, в 
свою очередь, имеют периодические и непериодические структурные составляющие, которые имеют 
существенное значение при раскрытии многопериодической природы движений, описанных исследуемой 
системой. Представление решения с выделенными многопериодическими составляющими названо 
многопериодической структурой решения. Оно реализуется на основе известной теоремы Бора о связи 
периодической функции от многих переменных и квазипериодической функции одной переменной. Таким 
образом, более конкретно, исследуются многопериодические структуры общих и многопериодических 
решений однородных и неоднородных систем с возмущенными входными данными. В таком духе изучаются 
нули оператора D и матрицант системы. Устанавливаются условия отсутствия и существования 
многопериодических решений как однородных, так и неоднородных систем. 

Ключевые слова: Многопериодическое решение, автономная система, оператор дифференцирования, 
Ляпунова векторное поле, возмущение. 
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