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ON THE MINIMALITY OF SYSTEMS OF ROOT FUNCTIONS
OF THE LAPLACE OPERATOR IN THE PUNCTURED DOMAIN

Abstract. In this paper, we consider the Laplace operator in a punctured domain, which generates a class of
“new” correctly solvable boundary value problems. And for this class of problems the resolvent formula is obtained.
Also described are meromorphic functions that generate the root functions of the class of problems studied. The
main goal is to study the minimality of root function systems. The paper is a continuation of [8], where a description
is given of correctly solvable boundary value problems for the Laplace operator in punctured domains. The Laplace
operator in the punctured domain, which generates the class of “new” correctly solvable boundary value problems, is
considered, and the resolvent formula is obtained for the generated problems, and meromorphic functions are
described that induce systems of functions. One of these systems is a system of eigenfunctions and associated
functions. The last section is devoted to the study of the minimality of the system of root functions.
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1 Introduction

Operators of the form L + K, where L = A is the Laplace operator, and K is the operator of
multiplication by a generalized function, appeared in the physical works of the 30s in connection with the
problem of scattering neutral particles on the nucleus, when the interaction is strong at small distances and
negligibly small to medium to large [1]. The model potential of such an interaction is the Dirac §-
function. A mathematical study of the operator —A + ud(x) was undertaken by Berezin and Fadeev [2],
Minlos and Fadeev [3], Berezin [4]. In [2, 3], the operator —A + ud(x) was understood as an extension of
the operator L, = —A with the definition domain D(Ly) = C§°(R3\{0}). Interesting are the works [5, 6],
where the following important question was studied: if the operator —A + g with a singular potential g is
already defined, can it be approximated in some sense by operators with smooth potentials so that the
corresponding operators approximate the original in the sense of resolvent convergence. The paper [7]
investigated the spectral properties of the Schrodinger operator with point interactions using positive
definite functions. For complete review, see marked work and links to them.

The paper is a continuation of [8], where a description is given of correctly solvable boundary value
problems for the Laplace operator in punctured domains. The Laplace operator in the punctured domain,
which generates the class of “new” correctly solvable boundary value problems, is considered, and the
resolvent formula is obtained for the generated problems, and meromorphic functions are described that
induce systems of functions. One of these systems is a system of eigenfunctions and associated functions.
The last section is devoted to the study of the minimality of the system of root functions.
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Consider a differential expression

%W (x,y) N %W (x,y)
d0x? dy?

AW (x,y): =

in the punctured area Qq = Q\{(xo, o)}, here Q = {x? + y2 < 1} and (x,, y,) is internal fixed point of
area (). We Turn from the expression AW (x, y) to the operator L, in the space L, ().
Denote by D the set of all functions

h(x,y) = hi(x,y) + @ G(x,y,%0,¥0), (x,y) € Q,

where @ € R, hy € D = {h; € W3(Q), hy|5q = 0}. Here and after G (x,y, xo, Vo) is Green function of the
Dirichlet problem for the Laplace operator in Q [9].
For h(x,y) € D we introduce functionals

fyM [ah(xo +8,y) 0h(xg—5,y)

1
a(h) == lim { e

2 6-+0

]dy +
Yo—§6

fxo+5 [ah(x, yo+8) 0h(x,y, — 5)] p
dy dy ok

XO—6

y0+6
By = Jim [ Thro = 8,3) = htxo + 8,)]dy,
Yo—6

x0+6

y(h) = llm f [h(x,y9 — 6) — h(x,yo + 6)]dx

Note that, the introduced functionals were first obtained in [8] to describe correctly solvable
boundary value problems for the Laplace operator in the punctured domain ().
Consider in the space LL,(€2) the operator L, generated by the differential equation

(L.1) W,y = fx,y), (x,y) €Qy,
with external boundary condition
(1.2) W(x,y)laa = 0,

and "internal boundary conditions"

(1.3) ;5_,+0 J-y0+6 [awo;oxwy) awo;ox 6y)] dy +

+%6lir£0 f;oj; [aw(gi"w) - aW(’;’;"’_(S)] dx—< AW (x,y),0.(x,y) >= 0,
(14) Jim [0 W (xo = 8,9) = W(xo + 6,)]dy = 0,
(15) Jim [50 [W (x, 0 = 8) = W(x,yo + 8)ldx = 0,

where f(x,y),0,(x,y) € L,(Q), < f(x,¥), g,(x,y) > mean inner product in L, ().
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2 Auxiliary statements
In the sequel, we will need a well-known statement from [10].

Theorem A. Let h(x,y) € D and there exists functional a(h). Then function

9G(x,y,$,m)
wey) = || GamemrEmdsdn+ | 22D h s, -
o aQ én
G (x,y, xg, G (x,y, X,
—a(h)G(x,y, %y Vo) — B(R) M —y(h) M
a¢ an
is uniqueness solution of the problem
(2.1) AW (x,y) = f(x, ), (x,¥) € Q,
(2.2) W(x, y)laa = h(x,y)laq,
Yo+8 [OW(xo+8,y) W (xo—8.y)
(2'3) 2 5—>+0 f [ ox ax ] dy +
1 5. Xo+8 [OW(x,y9+6) OW(x,y9—95) _
551—>+0 fxo—5 [ dy B dy ]dx = a(h).
24) im0 (W (xo = 8,9) = W(xo + 6, )ldy = B(h),
(2.5) m 20 (W (x,y0 = 8) = W(x, yo + 8)ldx = y(h).

5—>+0 Xo

Here G(x,y,&,1n) is Green function of the Dirichlet problem in (1 [9].

If we assume that h(x,y) € D in a continuous manner in (, in the norm of IL, depends on the right

side f(x,y) € L, (L), then the outer boundary condition (2.2) takes the form

(2.6) W(x,y)laa =< AW (x,y), 00(x,y) >,

and the internal boundary conditions (2.3)-(2.5) will take the following types

2.7 ;5_)+0 fy0+6 [aW(anx+a ) awo;ox 6y)] dy +

+3 Jim f;‘:_*; "’W(Zi"*‘” W o ‘”] dx =< AW (x,), 5, (%, ) >.
@8)  Jim [0 W~ 8,) = W(xo +8,)ldy =< AW (x,7), 02(x,y) >,
(2.8) 611210 fx0_ [W(x,y9 —8) = W(x,yy + 6)]dx =< AW (x,y), 05(x,y) >,

where g;(x,y) € L,(Q),j = 0,3.

For clarity of results, we assume that g;(x,y) = 0,j = 0,2,3. For the operator L,

theorem is true.

— g4 ——

the following
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Theorem 1. Function
(2.10) Wy = [, GCoy, &mf (& mdédn+< f(&n),01(€,m) > G(x,y, X0, ¥o)

represents the only solution for all right-hand sides f(x,y) € L,(Q) of problem (1.1)-(1.5).
For prove theorem 1 we will use well known lemmas from [11]:

Lemma A. For any continuously differentiable function g(x, y) the following equalities are true:

Yo+8 [0g(xo+8,y)  99(x0—6,y)
511>T0f [ dx ox ] dy +

lim J‘x0+6 [ag(x,y(ﬁ&) _ ag(x,J’o—5)] dx =0,

5-+0 %06 oy
Jim [0 S 1900 = 8,5) — g(xo + 6,9)]dy = 0,

lim [ "0 g% Yo — 8) — g(x,yo + 8)]dx =

5§-+0

Lemma B. For function G (x, y, x4, yo) the following equalities are true:

Yo+6 [aG(xO"'&y.xorYO) aG(xO—S,y,xo,yo)]
a(G) == lim — d
@)= 26—>+0f ox ox y+

xo+8 [0G(x,y0+8,x G (x,y0—06,x
+_ mfo [ (>, y0 03’0) ( yo OyO)]dx—l
26—>+0 oy

B(G) _ fx0+6 I:aG(ny0+6'x0'y0) _ aG(x'yO_gﬁxﬂ!yO):l dx — 0
6 +O 8 ady ay ’

y(G) = hm f o G(x Yo — 8,%0,¥0) — G(x,¥0 + 6,0, ¥o)]dx = 0.

Now, we proof the theorem 1.

Proof. Let us show that equation (1.1) holds for W (x, y). Operate the operator Laplace to the (2.10):
AW (x,5) = & ( || cer.enre n)dfdn) +
Q

(f(&m), 01§, MAG(x,y,%0,¥0)) = f(x,¥)

when (x,y) € Q,, as by the Green function property A(ffﬂ GOy, &S, n)dfdn) = f(x,y) and
A(G(x,y,%0,¥0)) = 0.

The validity of the first condition follows from the properties of the Green function.
Check the second condition

a(W)=<AW(x,y),01(x,y) >=
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« ( || 6e. f,n)ﬂf,n)dfdn) < ( || ser.emre n)ds‘dn>,01(x. >
Q Q

+< f(f»’l);a(f' 7]) > Of(G(X, }’:xo'}’o))_< f(f:’?)»ﬁ(f' 77) >
< AG(x,¥,%0,Y0),01(§,m) >= 0,

as by the Green function property A(ffﬂ G(x,y,&mf(En)dédn) = f(x,y) and A(G(x,y, X0, ¥o)) = 0.
And also by Lemma B a(G) = 1. By Lemma B a(ffﬂ G(x,y,f,n)f(f,n)d{dr}) = 0, as a function
u(x,y) = a(/] J, Gy, &mf (€ n)dé dn) is a twice differentiable function.

Check the third condition

BW) = B ( j f G(x, 7.5, n)f(f,n)dfdn> ¥
Q

< f(f! 7]):01(5» 7]) > ﬁ(G(X, Y, Xo, yo)) = 0.

By Lemma A B(ffﬂ G(x,y,¢, r})f(f,n)dfdn) =0, as a function
u(x,y) = a( /] fQ Gx,v,&mf (f,n)dfdn) is a twice differentiable function. And also by Lemma B

ﬂ(G(x) y; in yo)) = 0
Check the fourth condition

yaw) =y ( f f 6(x,, f,n)f(f,n)dfdn> +
Q

<fEm,01&m >y(G(x,y,%,¥0)) = 0.

By Lemma A y(G(x,y,%0,Y)) =0, as a function u(x,y) = a(ffﬂ G(x,y,&n)f(E,n)dédn) is a
twice differentiable function. By Lemma B y([f,, G(x,y,&,m)f (§,m)dédn) = 0.
Theorem 1 is completely proved.

3 The resolvent of correct internal boundary value problems for the Laplace operator in a
punctured domain

In this section in the functional space W2 (Q,) N C(Q), we calculate the explicit form of the resolvent
for a wider class of operators Ly 5,5, =:L, generated by the differential equation (2.1) and internal
boundary conditions (2.6)-(2.9) with g (+,-) = 0. The explicit form of the resolvent plays an essential role
in studies of the spectral properties of the operator L. For convenience, we introduce the notation

aG(xly'XO'yO)
9

aG(xlyIXO'yO)

T1(er’):=G(er’:xo'}’o)»Tz(x'}’):= »T3(x:}’)1= an )

Kj(x, ¥, 1) = Lo(Lo — AI)7'T},j = 1,2,3.
We formulate the main result of this section.
Theorem 2. The resolvent of the operator L represents an operator-valued function of the spectral
parameter A and has the following representation:

(31) L= f(ey) = =54

— 96 ——
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H(f) =

k1(x,y,4) K2 (x,y, ) K3(x,y, 1) (Lo =AD" f(x,y)
1-21a(k(x,y,0) —2A&(rz(x,y,4)) —A&(Kg(x; Y, A)) —a@(Lo(Lo — AD™ f(x,¥))
B (x,y,0)  1=2B0(xy,0) —AB(s(x,y,0)  —BLo(Lo = AD™ f(x, y))|
AV (1 (x,3,4))  —AV (k2 (%, 1)) 1-27(3(x,y,2)  —7(Lo(Lo — ADT f (x,3))

1-2a0a (6, ) —Ad(e(ny, D) —Ad(e(ry, )

d@) = |y D) 1= ABG(xy, ) —AB(ks(x,y, 1) |
A1 (x, 3, 4)) AV (k2 (%, 1)) 1—=27(rk3(x,y,4))

where
Kj(x,y,A):= Lo(Lo — AD)7'Ti(x,y), j = 1,2,3,

a (Kj (x,y, /1)) =<kj(x,y,1),01(x,y) >, B (Kj(x, Y, A)) =
<kj(x,y,4),0,(x,y) >,
7 (10,3, ) =< 1506,y D), 0506, ¥) >, @lLo(Lo — AN f(x,)) =
< Lo(Lo = ADTHf (x, ), 01(x,y) >,

BLo(Lo — AT f (x,)) =< Lo(Lo — AN (x,¥), 02(x, ) >,
P(Lo(Lo — AN f(x,¥)) =< Lo(Lo — AN f (x,¥), 03(x,¥) >.

Here L is discred operator, corresponding to the Dirichlet problem.
Proof. In paper [12] the following relation was proved for the resolvent of the operator L:

(3.2) (L =AD" y) = (Lo — AN (x,y) +
3

z < Lo(Lo = ADTf (x,), 05 (x,y) > L(L — AN T(x, ).
=1

Set f(x,y) = T1(x,y). Then we have
(L=AD7'Ty(xy) = (Lo — AN Ty (x, ) +

3

D < Lo(lo = DM (x,3),6506,y) > L(L = D)7 T, 9).
=1

We act on the obtained relation with the operator A. Recall that
1) when u € D(L) we have Au = Lu;
2) when u € D(L,) we obtain Au = Lyu. As a result, we get

(3.3) (1-2<w:06y,2),00(x,y) >)LL = ATy (x,y) =

3
Lo(lo = DTy (x3) + ) A< 1a(63),05(x5,3) > L(L = D706, ),
j=2

Here it is taken into account that (Lo — AI) 71T, (x,y) € D(Ly) and (L — Al )_1Tj(x, y) € D(L) when
j=1.23.
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Now, assume f(x,y) = T,(x,y). Then from similar reasoning we have

(L =AD7'Ty(x,y) = (Lo — AN Ty (x,y) +

3

D < Lollo = ATy (6,3), 6506 y) > L = A1) (6, ).
=1

We act on the obtained relation by the Laplace operator. As a result, we get that
(34) (1 =2 <Ka(x,9,0),0,(x,) >)L(L — AT Ty (x,y) =
Lo(Lo = ADT'Ty(x,y) + A < kea(x,¥),00.(x,y) > L(L — ATy (x,¥)
+A < Kky(x,y),05(x,y) > L(L — AI)"1T5(x, y).
When f(x,y) = T3(x,y), we have
(L =AD" T5(x,y) = (Lo — AN T5(x,y) +

3

> < Lo(lo = A7 MT5(x,3), 65(6,y) > L(L = AD) 7Ty, 9).
=1

We act on the obtained relation by the Laplace operator. As a result, we get that

3.5) 1-2A<k3(x,y,1),0.(x,y) >)L(L — /U)‘lT3(x, y) =

2
Lo(Lo = AN MT5(6,) ++ Y < k3(63),05(6,9) > L(L = A1) T3 (x, ).
=

Relations (3.2)-(3.5) constitute a homogeneous system of algebraic equations, which takes the matrix
form

[0000]

[t -Le- ADTITy(x,y) —L(L—2AD"'Ty(x,y) —L({L— 2D 'T3(x,y)]

k1(x,y,4) K2 (X, y,4) Kk3(x,y,2) (Lo = ADT' f(x,y) = L —AD)T f(x,y)
1=2a(k (x,y,1) —2A&(cx(x,y,4)) —Ad(k3(x,y,4)) —a@(Lo(Lo — AD™ f(x, %))
AP (3, D) 1=2B0(y, ) —AB((y, 1) —BLo(Lo = AN f(x,¥))
A7 (6,y, ) Ay, ) 1= 2A70(x,,4)  —F(Lo(Lo — ADT f (%, )

It is known from the course of linear algebra that a homogeneous system of equations has a non-
trivial solution for
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K1(x,y,4) K2 (%, ¥, ) Kk3(x,¥,4) (Lo — AN f(x,y) — (L —ADT f(x,y)
1=2a0 (%, 7, 0)  —Aa(xz(x,y,4)) —Aa(k3(x,y,4)) —a(Lo(Lo = A7 (x,¥))

—BUei(x,y,0)  1=2B((x,y,0) —AB(s(xy,2)  —BLo(Lo—ADT'f(x,¥)) =0.
(Y, ) AW y,D)) 1=k (6 y, D) —T(Le(Lo — AN (x, 1))

According to the standard properties of the determinants, we can write the equality

K (x,y,4) K2 (%, y,4) K3(x,y,4) (L=AD7f ()
1 —~/155(K1 (x,y,4)) —Ad(’fz (x,y, 1) —AC?(’% (x,y,4)) 0
—AB(e(x,y,1) 1= AB(ea(x,y,4) —AB(xks(x,y,4)) O =
A (0, ) A7y, D)) 1=A7(ks(x,y,4) 0
K1 (x,y,4) K2 (%, ¥, 4) K3(x,y,4) (Lo —ADTHf (x,¥)

1 —}07(’& (., 2) —Aa(’fz (x,y,2)) —1(?(’{3 (x,y,4)) —(?(Lo (Lo = ADT f (x,¥))
= (2B (Y, 1) 1=2BG(y, D) —AB(es(x,y, ) —B(Lo(Lo —ADT f(x,¥))
—a () —AG(0y,4) 1= APk y, D)) —F(Lo(Lo — ADTH (X, 3))

This implies the assertion of Theorem 2.

From the explicit resolvent formula for the operator L, it is not difficult to see that the resolvent is a
meromorphic operator-valued function, since the characteristic determinant d(1) may have poles in the
spectrum of the operator L,. Since the spectrum of the Dirichlet problem for the Laplace equation is
canonical restricted domains can be explicitly computed, then these poles are written out explicitly.

Corollary 1. The resolvent of the operator L can also be represented as

(3.6) (L= AN () = (Lo = D7 y) — 58
where
k1 (6,7, 2) K2(x,7,2) k3(x,7,2) 0

_ 1 —}07(’& (6, 1) —Aa(’fz (x,y,4)) —1(?(’{3 (x,y,4)) —(?(Lo (Lo = ADT f (x,¥))
H) =|-280c (6,3, D)) 1=2AB@k2(x,3,4) —AB(k3(x,5,4))  —B(Lo(Lo — AN f(x, %))
—a () —AG00y,4) 1= A7y, D) —F(Lo(Lo — ADTH (X, ¥))

Corollary 2. In particular, if g;(x, y) = 0,j = 2,3, then the operator’s resolution L, take the form

(3.7) (Loy = A7 G6y) = (o = AD 7 fGe,y) + L2828y 2,
where
(3.8) diA) =1—-2a(k (6, y, 1) =1 =A< k1(x,y,4),0(x,y) >.

4 Meromorphic function generating root functions operator L,
In further research we will need some properties k4 (x,y, 1).
Lemma 1. Meromorphic function k; (x, y, A) is the main solution of the homogeneous equation

Al (x,y, 1)) = Arer (x, y, A),
99
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satisfying linear conditions
K1 (%, ¥, Dlaa =0,
a(iy(x,y, D)) =< Ak, (x, 7, 1)), 01 (x, ) >= d(4),
B(r1(x,y, 1)) = 0,

Y1 (x,y,4)) =0,
where d (1) is define by (3.8).

Proof. Check that the function x4 (x, y, 1) is a solution of the homogeneous equation
AQiey (x,y, 1)) = ATy (%, ¥)) + ALo (Lo — ADT Ty (x, ) = Akey (x, 7, 2).

Here it is taken into account that A(T; (x,y)) = 0u (Lo — AD™T,(x,y) € D(Ly).
The validity of the first condition follows from the properties of the Green function.
Let us prove the validity of the second condition.

a( (6,7, ))=< A1 (x,,4)),01(x,¥) >= a(T1(x,y)) +
Aa((Lo = ADT Ty (6, y) =< A(Ty (x, )), 01 (x, ) > —
A < Lo(Lo = ADT'T1(x,¥), 01 (x,y) >= d(2),

so by Lemma B a(T;(x,y)) = 1. From Lemma A it follows that a((Ly — AI)™1T;(x,y)) = 0. It is also
taken into account that A(T; (x,y)) = 0 and (Lo — AI) 1T, (x,y) € D(Ly).
Check the third condition

Bler(x,y, 1)) = B(T1(x,¥)) + AB((Lo — AN T1(x,)) =0,

as by Lemma B B(T;(x,y)) = 0. From Lemma A it follows that B((L, — AI) 1T} (x,y)) = 0.
Check the fourth condition

Y (x,y, 1) = y(T1(x,¥)) + Ay ((Lo — AD™'Ty(x,¥)) = 0,

as by Lemma B y (T, (x,y)) = 0. From Lemma A it follows that y((Ly — A1) 1T, (x,y)) = 0.
Lemma 1 is proved.
For convenience, we introduce the notation

_ k1 (xy.)
4.1) P10y, ) == 5
If relation (4.1) is taken into account, then formula (3.7) for the resolvent of the operator L,, can be
written in the following form

(42) (chl - AI)_lf(X, y) = (LO - AI)_lf(x' }’) + &(Kl(xJ Y, /1))(P(x: Y A)

This implies that the poles of ¢;(x,y,4), and at the same time, the poles of the resolvent (L, —
A1 coincide with the zeros of the meromorphic function d(A). We show that the introduced solution
Kk1(x,y,4) as a function of A on the spectrum of the operator L, generates all its root functions.

Theorem 3. Let A, be an arbitrary zero of the characteristic determinant d(1) of multiplicity my.
Then the functions from the following line:

— 100 ——
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1 3Ky (%Y%) 1 9™k iy (0, Ak)
4.3) Ki(x,y, Ak),l! IRty U

have a spectral interpretation: the first nonzero zero function is a proper one, and the subsequent ones are

attached, generated by the indicated eigenfunction, corresponding to the eigenvalue A, of the operator
L. .
1

Proof. The proof of Theorem 3 is that it is necessary to check for p = 0, ..., m;, — 1 relations

1 8Pkq (x,y,Ak)
(44) i ow € Pla)
1 0Pk (Y, )Y _ 1 8Pk (Y, Ak) € 0P Lk (x,y. k)
(4.5) Lo, (p! P ) = Ak (p! AP ) (-1 oar-t

where € =0 when p =0, ¢ =1 when p > 0. From what d(1;) =0 and follows from Lemma 1
k1(x,y,A) € D(Lg,). Therefore, the operator relation L, (k4 (X, ¥, A4x)) = Agk1 (X, Y, Ai) coincides with
a homogeneous differential equation A(x;(x,y, 1)) = Aik1(x,y,A;), which by definition x(x,y, A1)
holds when A = A;.. Thus, if k(x, y, A;) is not identically zero functions, then x(x, y, A;) is eigenfunction
of the operator L, .

Now let p = 1 < my. Notice, that d(1;) = 0, d'(4;) = 0 and

Ok (xy,A) _

_ d _
37 (Lo — AD™Ty(x, y) + Aa(l‘o —ADTTy(x,y),

r 0
d'l) = —<ki(x,y,1),01(x,y) > -1 < 6—/11c1(x, y,A),0(x,y) >.
Calculate

A (akl(x!yll)

_ d _
YD) = Lo(Lo — ATy (0, ) + A5 Lo(Lo = AT Ty (6, y) =

= A k1 (0,7, 2) + Ky (1,7, ).
The validity of the first condition follows from the properties of the Green function.

Let us prove the validity of the second condition.

9K (x,y.4) 9K (x,y.A) -
o (FE2R) —< 4 (T2 6y (x,y) >= al(Lo — A T Ta (%)) +

0
Ak 57 a((Lo = 4) T Ta (3, ) =< A((Lo — )T (x, ), 01 (x, ) >

a — ’
—Ak 57 <ALy — )T T (%, ¥)), 01(x,y) >=d'(A4) = 0,

so by Lemma A a((Ly — A1) "1T;(x,y)) = 0. It is also taken into account that (Lo — A, 1)71T;(x,y) €
D(Ly).
Check the third condition

B (ZAL2D) = (L — 1) Ty (6 )) + A2 B((Lo — BT (6,3)) = O,

so by Lemma A B((Ly — A)™1T;(x,y)) = 0.
Check the fourth condition

y(ea (2,3, D) = v((Lo = ) T Ta (6, ) + Ak %V((Lo — )T T (x,¥)) =0,
so by Lemma A y((Ly — AI)™1T;(x,v)) = 0.
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Continuing the arguments for other admissible p, we obtain a complete proof of Theorem 3.
5 Projectors on rood supspace

In the monograph ([13], ctp. 445) the decomposition theorem is given, from which it follows that the
projector Py: Ly (Qo) = (Lg, — Ak l)™* represents the residue of the resolvent at the singular point A, :

1
PNHEN =52 § Uo =D y)dA
[A=2g|=6

with some § > 0. Since the resolvent of the Dirichlet operator has poles, for completeness of information
we consider two cases.

First, we consider the case when the eigenvalue 4 of the operator L, does not coincide with any
eigenvalue /1]9 of the operator Ly. Recalling the representation of the resolvent (3.7) from Corollary 2 and

considering that the resolvent (L, — A1)~ of the Dirichlet operator represents a holomorphic function of
A, projector type P, can be specified:

VA
G1) PN Y) = =56 pis o
(6, 2)

<f@m)%@5—ﬂY%ﬂ£m>dl=%§ < fEm, M (En,2) >,

d(d)

where My (§,1,4) = Ly(Ly = AN~ o1 (€, m).
Apply the Cauchy residue theorem to the relation (5.1), we obtain

_ 1 9T (- ™R<f(§m) My (EnA)> _
(52) BN = 5y Jim T CEDMEND2 1, (x,,2)) =
_ymeel L g 0P ((A—Ak)mkf(an),zwl(&nﬁ»)1apx1(x,y,z) _
P=0  (my—1-p)! A>1) OA™K"17P ) p!  9AP A=Ak
mye=1 __ 1 Nk ((i—ik)’"le(f.n.I))
Zp:() < f(fr n)l (mk_l_p)!ilir%lk azmk—l—p m >
1 apkl(x,y,/l)|
! P
p! oA A=1,
Analysis of formula (5.2) leads to the following notation.
(53) Ee = {hico (6, b1 (6,10 s hagm -1 (6.}
where
___ 1 o 9mkT1P (I—Ik)mle(f,nﬁ)>
(5.4) hiemy—1-p(§,1) = (mk_l_l’)!ili%lk TP ( T )
p=0m; — 1
We introduce the following family of functions
(5.5 E' = {E,’c: Ay is arbitrary eigenvalue of the operator Lcl}.
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Thus, we need to study the decomposition of arbitrary elements from the functional space L, ({,) in
the system of root functions of the operator L, .

5.6) E= {Ek: Ay is arbitrary eigenvalue of the operator Lcl}.
(5.7) Eie = {Wieo (6, ), Wia (6,9, -, Wiemye-1 (6, 1)}
where

_ 6”x1(x.y,/1)
Wk,p(x; Y) - aip A=y

Now, we consider the case 1, = 3.
Pef)(x,y) = — o Eﬁm A= Loy — A7 (x,y)dA =

= res, (Lo = ADT (e, 1) +

k=4

LY, A
Aigik <6~¥(L0(L0 —ADTH (%)) 1-— ;‘;E;}(Ix, ; 3)))

First, we calculate the first addend. Given the representation for the resolvent of the Dirichlet
problem as an expansion in eigenfunctions

_ o 1
(5:8) (Lo = A7 (,9) = Tier 3755 0 (6, 7),
we calculate the first addend

Vii= Ares ((Lo —AI)™ 1f(x y)) =

k=4

e A(Z pr y)) ~fewf ().

Calculate the second addend. Here we use the standard transform.
Lo(Lo = ADT'Ty(x,y) = Ty (x,¥) + A(Lo — AD) ™ Ty (x, ¥).

Then

Vo= res, ([0 + Ses 075 it (b))

k=

A
Tl(x y) +Zm 1 /10 _ATlmwm(x y)

1= 26(135.3)) ~ Ziner 7 Tim@ (@A) |

Multiply the denominator and numerator in the last relation by 1;, — A. As a result, the deduction will
be equal to
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A T1rwp(x,y)
DT (wR (%))

V2 = Aefu@(wi (%)) - G = fiwi (x,¥).

So in the case of 4, = A the projector

(Pef) (e, y) = Vi + Vs = —frop(x,y) + frwp (x,y) = 0.

The main result of this section is formulated as a theorem.
Theorem 4. Let 4, is eigenvalue of the multiplicity my, of the operator L,, . Py operator on root the

subspace of the operator L, corresponding to 4y is determined by formula (5.2).

6 Minimality of the root function system

In this section we prove the minimality of the system of root functions of the operator L, in the
functional space L,(£;). Generally speaking, choosing one or another basis in the root subspaces
P, L, (£y), it is possible to study different systems of root functions. We investigate the minimality of a
concrete system (5.6). System (5.6) is generated by solutions of the differential equation (4.5), generating
operator Ly, . In particular, the Green’s function associated with the operator L, is written through them.
To prove the minimality of (5.6) in the functional space L, (£), it suffices to construct a biorthogonal
system of functions in this space. In the previous paragraph 5 such a system has already been built. It
remains to verify that system (5.6) lies in L, (Q}y) and satisfies the biorthogonality relation.

To begin with, we verify that the functions in (5.6) are elements of the space L,({;). Since,
according to (5.4), each hy.(&,m) represents a linear combination of functions M, (¢, n,A) and its

derivatives for A =4, (k= 1,2,...,n), it suffices to check that these functions M;(&,n, E), (k=
1,2,...,n) belong to L,(p). The latter fact is obvious, since M, (&,1,4) = Ly(Lg — AD=1g,(¢,1) and

01(&,n) are an element of L, (Q).
To establish the biorthogonality relations, we need the following lemma.

Lemma 2. For arbitrary complex numbers A, u the identity is correct

_dd-dw)
A-p

<t (%Y, ), My (x,y, 1) >=
Proof: For arbitrary A, u we calculate the following inner product
A<K1(x,y, ), M;(x, 9, 1) >1,000)= A < k1 (x,,2),01(x, ) +
u(Ly —uD ™oy (x,y) 2< Ary (x,y, ), 01(x, y) > +
p<Ary(x,y,2), (L — 5D toy (x,¥) >
=1—d) +p < A1 (x, 5, ), My (x,y, 1) >,

where My (x,y, 1) = (L — iil) 1oy (x, y). Here, took into account the formula (3.8) for the characteristic
determinant operator L, . We calculate separately the scalar product

<Ay (6,3, ), My (x, 5, 0) >=<11(x, 5, 4), AM; (x, y, 1) > +

. axl(xy/l) _ oM (x,y,10) _
+dim [ (P22R, (3, = 1y (o y, ) P2 ds
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dKq(x

. YVA) — oMy (x,y,;0)
— i, Sy (G Gy — kG, ) SR ds =

=< Kl(xly'A)IAIW;(nylﬁ) > =

: aK,(x,y,4) oM, (x,y, 1)
lim —_— - ———|ds,

= ¥, A —
s ang an Kl(x y ) an

in that 1, (x,y, 1), M1 (x, v, 1) € W2(Q), then

: Ok (xy.A) 77 - 6m(xry!ﬁ) _
Jim o (PE2DM, G,y B — ki (v, ) ZE2 ) ds = o.

Here [13 = {(x,y): =86 <x—x9 < 8,—8 <y —y, < 8}. Then
A=p) <Kk (6,9, ),My(x,y,0) >=1—=d(4) -

: Or1 () 77 — oM, (x,y,10)
—udim [y (P MG,y D) — e (x,y, ) T ds.

Notice, that AM; (x,y, 1) = M;(x,y, 1), because (Ly — iil) " oy (x,y) € D(L}). Hence, when A = y,
we have

. d VM) 5 — oMy (x,y.;k
wdim, fy g (P25 Mo D) — v ey, ) S22 ds = 1= ),

Considering the last relation, we transform the previous equality
A=) <k (Y, D), Mi(x,y, 1) >=1—-d(A) —1+d(p) —

; oK1 (xy,A) _ ki (Y. 77 — _
“(JLTofang [( on o )Ml(x,y,u)

(e (2, y, A) = K1 (%, y, 1)) =—d) +dWw) -

oM, (x, y;ﬁ)] p
- = S
on
. a _ % — =
~A=wufim fono 52 Lo =ANTTi(xy) - (Lo — BN a1(x, y)ds +

: _ d v —pno
+(A = pulim fono (Lo = AT Ti(x,y) - 52 (Lo = BD) T o1(x,y)ds
Recall the representation for the Dirichlet problem as an expansion in eigenfunctions

- [e/0) <T( 2, )v 19n( 2, )>
(Lo = ANy (x,y) = By 55— op(x,) =

é 7 Om®),
m=1" ™

* —r\— o <o (xy)w)xy)> ) J1n
(Lo — D)o (x,y) = Enmy — 25— wp(%,Y) = Xz o= wn (%, )
An—t -
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As a result, we have

A=) <1 (x,y, ), My (x, y, p) >= —d (1) +d(p) -

—(A=Wu Z?fl=1 Z?zo=1 %

I f[a 0 ]d =—d() +dWw) -
Am | [s=omen(xy) — om(y) Z=on(x,y) | ds () +d(w)

a1

A —=wu Z?fl=1 Z?zo=1 %

lim [Awpwn (x, ¥) — wp (x, y)Awp(x, )lds = =d(2) + d(w) —

5-+40
arlg

A - uXoo, T2, %T;gm (28, — 29)

lim [ wdwl(x,y)ds =—d(A) + d(w)

5-+40
1
as if m = n, to 19, — 19 = 0. If m # n, then the integral is equal to zero due to the orthogonality of the

eigenfunctions of the operator L.
Lemma 2 is proved.
To establish the biorthogonality relations, we check the

_ (1, ecmu (n,s) = (k,p);
< Wn,s(xi Y)'hk,mk—l—p(xi y) >= {0, ecJIn (TL, S) +* (k, p)

We consider two eigenvalue A and A;. They match pairs (s,t) and (k,p), where t = 0,1, ..., mg — 1
andp = 0,1, ..., m; — 1. Note that the inner product

< Wy s(x,y), hk,mk—l—p(x' y) >=

_ 1" 1 oMk (u=A)™k
B _/1h—>r31151}1—>r/rllk nldA™ (my—1-p)! du™k 1P (< (%, 3, 4), My (%, y, 1) > T,u))
Recalling Lemma 2, we get equality
(6.1) < Wn,s(x: Y): hk,mk—l—p(xr y) >=
10" 1 OMkTITP (d(D)—d(w) (u-A)™k
= Jim o Gt g = ( iw AW )

We introduce the notation

1 8% (dA)-d(u) (u—A)™k
(6.2) Hee (@) = lim a#t( e )
We consider the function

A —dw) (=A™
Fiw == aw

and expand it in a neighborhood of the point 4 = A;, into a Taylor series. Then

F(1) = Ho(A) + Ha WD) = A) + -+ + Higmy—1 (D) (0 — )™ + -,
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that is, Hy+(A) is the k-th Taylor coefficient, with a corresponding expansion, in a neighborhood of
u = A. The direct calculation of the coefficient of the Taylor series of the function F(u) leads to the
following formula for t = 0,1, ..., my, — 1:

1 1
(6.3) Hy (A1) = d(4) (Ak,mk—l et T Akme-2 G5t

1
W
My t—-1 /1 _ /’lk
where number Ay, _1, -, Ag o define by identity

1 _ Ak,mk—l Ak,mk—Z
aw)  (U=A)™Mk - (u=A)™et

A (00
+ot #_L;k + Xg=0 Brq(tt — 2)".
If A; # Ay, that of (6.1), (6.2) and (6.3) whenn =0,1,...,m;, — 1

. 1 9™
< Wn,s(xr y):hk,mk—l—p(xr y) >= }L%SEWHRJ(A) =

_ 19" t+1 kmk—t+i—2=l n) t+1 Ak,mk—t+i—2=
= Jim = LA T S = Lam ) pit] et

in that d™ (1) = 0.
Now consider the case 1; = A;. Transform the right side of the relation (6.3)

A ,m i-
(64) Hye (D) = d) B2 =325 =

1 1

=d)A = )™t (Ak,mk—l G T Akme—2 Gt

+Ak,mk—1—t W) = d(l)(/l - /’{k)mk_t—l

1 1
(ﬁ - Ak,mk—z (ﬂ—/lk)mk_l_t ' Ak 0 A Ak Zq =myg qu(A Ak)q)
(A= A)m™e It 4 3o ChgA = AL k= 0,1, ..., my — 1.

From relation (6.1), (6.2) and (6.3) we obtain

< Wns(x y) hkmk 1- p(x y) >= Hkmk 1- p(ﬂ) -

n! ,11 A 0A™
Lim 2 (A= 2™t 32 et (A= A0)9).
n! ,1_>,1 aAn a=mk ~kq k

This implies the required assertion for A, = 4. Q.E.D.

Note the works of the authors [14, 15], where obtained the formulas of the first regularized traces for
Laplace operator and double differentiation in the punctured areas.
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b. BexGonaTl, . Bb. HyanMeTOBz, H. Toxkmaraméeros®, I'. X. Aiimaxa Paca*

1’3’4811-d>apa61/1 aterHgarel KasYV, Anmarel, Kazakcran;
*Coken Cetidynnmun ateiHIarel Kasak yITTBIK arpapiblK YHUBepcuTeTi, Actana, Kazaxcras;
I'ent ynuBepcureri, ['enr, benrns;
'“MaremaTnka %oHe MaTeMAaTHKAIBIK MOJIEIbACY HHCTHTYTHI, AnMatel, Kasaxcran

OMBLIFAH AI‘/‘IMAKTAFI{! JIAIIJIAC OIIEPATOPBIHBIH
TYBIP ®YHKHUAJAP )KYUECIHIH MUHUMAJIABLJIBIFbI

AnHoTanus. bi3 ocsl MakaizambI3a, KUCBIH/BI MIEMIUIETIH IETTIK eCeNTEePAiH «KaHa» KJIACChIH TybIHIATaThIH,
oiiplIFaH alimakrarbl Jlammac omepaTopblH KapacTblpambid. Ochl ecerl YIIiH pe30jbBeHTa (opMyrachl aylbIHFaH.
CoHBIMEH KaTap, 3epTTereH ecenTiH TyOip GYHKIMSIIaphIH TYBIHAATATHIH MEPOMOP(TH QYHKIHSIAP CUIATTAIFAH.
Herisri maxcatbiM3pl TYOip (QyHKOUSIAp KYHECIHIH MUHHMAIIBUIBIFBIH KapacTeIpy. bBi3[miH >KYMBIC OWBLIFaH
aitmakTarsl Jlamac onepaTophl YIIiH IIETTIiK €CENTiH IMEeIiMIUIrT CHIaTTanFad [8] »KYMBICHIHBIH KaJTFAChl OOJIBIIT
tabbutazel. Makanaza KUCBIHABI INENIUIETIH MIETTIK €CeNTepliH <«0KaHa» KJIACChIH TYBIHOATaThIH, OHBUIFaH
afimakrarsl Jlammac omepaTopel KapacTBIPBIIBIN, TYBIHAAFaH €CENl YIIIH pe30JbBEHTa (hopMynachl aybIHFaH,
COHBIMEH KaTap, GpyHKIHsIIap sXylHeciH KypaTslH MepoMOpGTHl GYHKIUSIAp CUMATTaIFaH. MEHIIIKT] ®KoHe KOCAIKbI
(yHKUMsIIapABIH JKYHeci ochlHAail JkyieHiH Oipi Oosibin TaObuiagsl. CoHFbl OeiniM TYOlp (yHKUMsIIApABIH
MUHHAMAJIBIIBIFBIH 3€PTTEYTe apHAIFaH.

Tyiiin ce3aep: Jlarmuac omepartopsl, oifbulFaH aiiMak, pe30sibBEeHTa, MEPOMOP(THI QYHKIHS, MIETTIK €CENTiH
KMCBIHJIBI IEIMIUTIT, TYOIp hyHKIMsIIap sKyheci, MUHIMAI KYHe.

B. Bex6oaat’, /. b. Hypaxmeros’, H. Tokmaraméeros®, T'. X. Aiiman Paca*

134KasHY um. Anp-Dapabu, Anmarsl, Kazaxcran;
*Kasaxckuii arporexHnueckuii yuusepcutet umenn Cakena Cetidyunna, Actana, Kaszaxcran;
lenTckuii yHuBepcurer, ['ent, benrus;
SYHCTHTYT MAaTEMATHKH M MaTEMATHYECKOTO MOeMpoBaHus, AnMarhl, Kasaxcran;

O MUHUMAJIBHOCTH CUCTEM KOPHEBBIX ®YHKIUI OIMTEPATOPA JIATIJIACA
B ITPOKOJIOTOU OBJIACTH

Annoranus. B mannoit pabote paccmoTpeH omeparop Jlammaca B mpoKoiIoTOH 006JacTH, KOTOPHIH MOPOKAAET
Kjacc "HOBBIX" , KOPPEKTHO pa3peIIMMBIX KpaeBbIX 3amad. M mmg 3Toro kiacca 3amad moiydeHa Qopmyia
pe3onbBeHThL. Takke onucanbl MepoMopdHbie QYHKINH, TOPOXKIAIOUINE KOPHEBBIX (DYHKIUI Kllacca UCCIIeTyeMbIX
3ana4. OCHOBHAS LENIb — N3yYEHHEe MUHUMAIBFHOCTH CHCTEM KOPHEBBIX (yHKIUH. CTaThs SBIAETCA MPOJODKEHHEM
pabotsl [8], TAe AaHO omMCcaHKe KOPPEKTHO pa3pelluMbIX KpaeBbIX 3ajad Jyisi oneparopa Jlamuaca B IPOKOJIOTBIX
obnactsax. Paccmorpen omeparop Jlamimaca B MPOKONOTOH 00AaCTH, KOTOPBIA MOPOXAaeT Kiace "HOBBIX"
KOPPEKTHO Pa3pelIMMBbIX KpaeBbIX 33jay, U JJIsl MOPOXKISHHBIX 3a/1ad Mojy4eHa (GopMyna pe3osIbBEHTHI, a TaKkkKe
onucansl MepoMopQHbIe (PYHKIMH, KOTOPblE HMHAYLHUPYIOT cucTeMbl QyHKIMHA. OHa U3 3TUX CHUCTEM, KaK pas, U
SIBIISIETCSI CUCTEMON COOCTBEHHBIX M IPUCOCIMHEHHBIX (QyHKIMH. [locnenHuii pa3men IMOCBSIIEH HCCIIEIOBAHHIO
MUHUMAaJIBHOCTH CHCTEMBI KOPHEBBIX (DYHKITHIA.

KiaroueBsle ciaoBa: Omnepatop Jlammaca, mpokonorass o0nacTh, pe3ojbBeHTa, MepoMopdHas (GYHKIHS,
KOPPEKTHO pa3pemnmas KpaeBas 3aada, CHCTeMa KOPHEBBIX (DYHKITHI, MUHUMAIIbHAsS CHCTEMA.
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