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ON PROJECTIONAL ORTHOGONAL BASIS
OF A LINEAR NON-SELF -ADJOINT OPERATOR

Abstract. In this paper we study spectral properties of a linear non-self-adjoint operator with an internal
symmetry of the form:
PL=1L"P, LQ =QL;

where P* = P, Q" = Q are orthogonal projections, L* is an operator, adjoint to the operator L in the Hilbert space H.
It is shown that a spectrum of such operator is real. In the case of a discrete operator, with a complete system of
eigenvectors and associated vectors, the projections of eigenvalues and associated vectors of the operator L and its
adjoint operator form an orthonormal basis. A class of Sturm-Liouville operators with such symmetry is found,
moreover, it is found that the characteristic function of such an operator factorizes. An illustrative example is
provided.

Keywords: Linear non-self-adjoint operator, real spectrum, basis, root vectors, completeness, theory of electric
signals, plasma theory, discrete operator, invariant subspaces, root subspaces, completely continuous operator,
eigenvectors and associated vectors, internal symmetry, projection, resolvent.

1. Introduction. The aim of the paper is to study the spectral properties of a certain class of linear
non-self-adjoint operators L with a real spectrum that have the following internal symmetry

2.

PL=1L'P, LQ =QL*;P* =P, Q* =0,

where L is a linear operator with a domain D(A), that belongs to the Hilbert space H, and P and Q are
orthogonal projections, defined in this space.

We will assume that the Hilbert space H is separable.

We consider a completely continuous operator T, acting in the separable Hilbert space H. We denote
by R; the following operator

(T-2D"L. (1.1)
The set of points of the plane A, for which the operator (1.1) is everywhere defined and bounded, is
called the resolvent set, and its complement is called the spectrum of the operator 7. It is known that the
spectrum of the completely continuous operator 7" consists of at most a countable number of points

A1y gy Mgy oo Ay oo

which can have a limit point only at zero. If the space H is infinite-dimensional, then zero is always a
point of the spectrum of the completely continuous operator. Each non-zero point of the spectrum A5 of
the completely continuous operator T corresponds to a finite-dimensional invariant subspace K, which is
defined as the set of elements of £, canceled by some power operator T — A l:
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(T — A, D"f =0 (1.2)

The subspace K; is called root subspace. Dimension of the root subspace, corresponding to the point
of the spectrum A;, we will denote by mg.

In each of the root subspace Kj, since it is finite dimensional, it is possible to choose a basis, in which
the transformation is written by a Jordan matrix. This basis consists of several chains of equalities:

fivfov o fryv fizofozs oo frRpzo s fig foqr o frya (1.3)

Each chain forms a basis in one of invariant subspaces on which this root subspace K splits. For
elements of each chain the following equalities hold:

Tfie = Asfior The = Asfor + fio ) TfR-L—‘L' = ASfR-L—‘L' + fRT‘r

The first element of the chain is an eigen element of the operator T, corresponding to the eigenvalue
A, and the others are so-called associated elements.

In the paper we consider linear non-self-adjoint operators, acting in the separable Hilbert space H and
with a discrete spectrum. The last one means that all points of a spectrum of the operator 4 (with the
possible exception of one) are isolated, and the corresponding them subspaces are finite-dimensional. A
finite-dimensional invariant subspace of the operator A, concerning to a certain point of the spectrum A,
is usually called the root subspace. We will denote it by K.

A root subspace K can be characterized as a collection of elements f, which satisfy the following
equation at some integer m > 1

A-2,D™Mf = 0. 0.1)

As is well known, completely continuous operators, as well as unbounded (for example, differential)
operators that have completely continuous inverse, has a discrete spectrum.

The main problem of the paper is to study the conditions under which a system of finite-dimensional
invariant (root) subspaces of an operator turns out to be a basis in A or in the range of the operator.

Definition 1.1. A system of elements {e,},n = 1,2, ... forms a basis in the space H, if any element
X € H can be uniquely represented in the form of the convergent series

Every basis is a complete uniformly minimal system. However, a complete minimal system may not
form a basis in space. For example, the trigonometric system ey(t) = 1, e,,_1(t) = sinnt, e,,(t) =
cosnt, (n=1,2,...) is complete and uniformly minimal system in the space C(—m,m), but does not
form basis there.

Definition 1.2. System {e;}, i = 1,2, ... is called an unconditional basis in the space H if it remains a
basis for any permutation of its elements.

Let T be a linear bounded operator, acting in the space H and have a bounded inverse. If the system
{e;} is a basis, then the system {Te;} is also a basis. If {e;} is unconditional basis, then and {Te;} is
unconditional basis.

In the Hilbert space H, any orthogonal basis is unconditional. It turns out that any unconditional basis
in the Hilbert space can be represented in the form {Te;}, {e;}is an orthogonal normed basis. Such bases
were called Riesz bases. They can be characterized by the following properties: there exist positive
numbers m and M such that for any x € H

o8} 0
me Y el < llxl? < M- ) |Gx el
i=1 i=1
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Completeness is a necessary condition to have a basis. We clarify that a system of finite-dimensional
invariant subspaces of a certain operator is called complete in a Hilbert space H, if any element h € H can
be approximated with predetermined accuracy by the norm of a finite linear combination of elements,
each of which belongs to one of the invariant subspaces. It is well known that if some completely
continuous operator is self-adjoint, then the system of its finite-dimensional invariant subspaces is
complete in the range of values of the operator, moreover it forms an orthonormal (after normalization)
basis (in this case the root subspaces turn out to be proper).

In the case of a general completely continuous operator, the completeness may not occur. The
simplest example of this kind is the integration operator

Af = [ f(®dt, 0<x <1, (0.2)

which acts in the Hilbert system of functions, that are Lebesgue integrable square in the interval [0,1].
Further we will denote this space as L,(0,1). It is easy to verify that the operator (0.2), being completely
continuous, has only a single point of the spectrum — zero and does not have any eigenvector.
Consequently, it has no finite-dimensional invariant subspaces at all.

In the theory of non-self-adjoint operators in a Hilbert space, questions on completeness and basicity
of systems of root vectors play an important role. For many classes of non-self-adjoint operators,
completeness of system of root vectors has now been studied quite fully. Important results in this direction
are contained in [2] - [11] and monographs [1].

Problems of basicity of root vector systems are investigated much less thoroughly than the questions
of completeness. The basis condition of the root vector system was studied for dissipative operators by
B.R. Mukminov [12], .M. Glazman [13] and A.S. Markus [14], and for weakly perturbed self-adjoint and
normal operators by A.S. Markus [15] and by Visitey and A.S. Markus [16]. The methods, developed in
[12] - [17], make it possible to establish that a system of root vectors of an operator belongs only to the
class of Bari bases [18]. The class of Bari bases is very narrow, and basis property of the system of root
vectors has been established in [12] - [17] with rather strict restrictions on operator.

In [19], a completely new analytical method was proposed for questions on basicity, based on
systematic use of theorems on interpolation by analytic functions. In this case, L. Carleson theorem [20]
on interpolation by bounded analytic functions was used. In this paper, series of theorems are established,
these theorems contain conditions, sufficient and, in some cases necessary, for a system of root subspaces
of an operator in a Hilbert space to be Riesz basis in its closed linear hull. Connection of operator-
theoretic and differential-theoretic considerations was made on basis of the well-known J.fon Neumann
theorem [21] - [22]. Ideas and methods of this paper were continued in the monograph [23].

V.P. Mikhailov [24] and G.M. Keselman [25] proved the Riesz basis property of systems of
eigenfunctions and associated functions of an ordinary n-th order differential operator with strongly
regular boundary value conditions in L,. In the case of irregular boundary value conditions, a system of
eigenfunctions and associated functions of the problem does not form even usual basis in L.

Basicity problem was completely solved only for the Sturm-Liouville model operator

Ly =—y'(x) =y(x), x€(0,),
a11y(0) + a;,y'(0) + ag3y(1) + a;,y'(1) =0,

a21Y(0) + az,y'(0) + a3y (1) + ay,y'(1) =0,
in [26].

In the case when the boundary value conditions are regular, but not strongly regular, the question on
basis property of systems of eigenfunctions and associated functions has not yet been completely solved,
thus, very active research is being conducted in this direction [27] - [31].

Theory of bases has, besides the theoretical value, purely practical value, and is used in the theory of
electrical signals [32] and plasma [33].
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2. Research Methods.

Lemma 2.1. If a system of vectors {y,}, n = 1,2, ... is complete in the space H, then systems {Py,}
and {Qy,} are complete in the subspaces H; = PH and H, = QH, respectively, where P and Q are
orthogonal projections given by the formulas

_I+S [-S

P —l :—J

2 2
and the operator S has the form Su(x) = u(1 — x), Vu(x) € L?(0,1) = H.

Proof. Let for some element g € H; of the subspace H; the following equality holds:
(9.Py) =0, n=12,..

where (+,) is a dot product in the space H, then there exists an element of the space H, such that g = Pf,
consequently,

(Pf.Py) =0,  (P*f,yn) = (Pf,yn) =(g,3) =0, n=12,..
due to completeness of the system {y,, } in the space H we have g = 0, that is required to prove.

Example.
It is known that the system {ei”x},n = 0,41, 42, ... is complete in the space H = L2(—m,m). We put
that Su(x) = u(1 — x) and
b I+S _I-S

2’ 2’

eanC+e—LnX

then the system u,(x) = Pe!™ = = cosnx is complete in the space of even functions

2
H, = PH; The system v,,(x) = ae'™ = i sinnx is complete in the subspace of old functions H, = QH.

Let an operator L be densely defined and have a completely continuous inverse operator L™!. Then a
spectrum of the operator L is discrete and consists of only eigenvalues. Suppose that the following
formulas hold:

PL=LP, LQ =QL,

where P and Q are orthogonal projections, i.e.

P =P, Q" =Q.

Lemma 2.2. If y,, is an eigenvector, and ¥, is an associated vector of the operator L, corresponding to
the eigenvalue A, and the equality Py,, = 0 holds, then Py,, # 0 and the vector Py, is eigenvector for the
adjoint operator L*.

Proof. By assumption of the theorem, we have LY, — 4,3, = K,, - ¥, where K,, is some nonzero

constant, then
PLy, — A, Py, = K,,Py,, = 0,=> L*Py,, — APy, = 0;

If Py, = 0, theny; = (P + Q)¥n = Q¥n, => LQYy — 2,0¥7 = Ky * Y.

Acting by the operator Q to the both sides of this equality, and taking into account Qy, # 0
(otherwise we have y, = 0), we get

QLQYy — 1,Q¥y = Ky - Qyp # 0.
Due to the formula LQ = QL*, we obtain
QZL*% = QY = Ky - Qyn # 0, QL*Yy — 4,Q0¥y = Ky * QY.

LQYy — 4,0V, = Ky - Qyn # 0.

— g2 ——
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Thus, due to the formula, 35, = Q3;,, we get

LQQyy, — AnQ¥y, = Ky - Qyn # 0.

We obtained a contradiction, since the self-adjoint operator L@ has no adjoint vectors, therefore
Py, # 0 and L*Py;,, = A,,Py;,.
Remark. From the equality Ly,, = 1,,¥,, when Py, = 0, we have

L (&y_@ + Qyn> = A (% + Qyn> ,=> LQyy = 2,QYn, LQ(Qyyn) =
0 0
A Qyn # 0;

i.e. Qyy, 1s an eigenvector of the operator LQ.

Lemma 2.3. if to the eigen function y,, there corresponds a nonzero associated function ;,, then
Py, = 0 and Py,, # 0.

Proof. By condition of the theorem, we have

Lyn = AnYn, Yn # 0, LYy — 24V = Kn " Y, K, # 0.

Then acting by the operator P to both sides of the last formula, and using the formula PL = L*P, we
have
PLy, — A,Py, = K,Py, = 0,=> L*Py, — A,Py,, = K,Py,,=>

L*P(|P¥;) — A, Py, = KnPyy.

If Py, # 0, then Py, # 0, and the self-adjoint operator L*P has an associated vector, which is
impossible, consequently, if to the eigenvector y, there corresponds an associated vector 3;,, then
Py, = 0, and from the previous lemma it follows that Py,, # 0 and the vector Py, is eigenvector for the
operator L.

These three lemmas form the basis of our method.

3. Research results.
Theorem 3.1. If root vectors of the operators L and L* are complete in the space H, and

1) PL = L*P;
2)LQ = QL%
3)P2=P, P*=P; Q*=0Q, Q" =Q,

then spectrum of the operator L is real, and normed projections of root vectors of the operators L and L*
form an orthonormal basis in H, i.e.

Qn

QI

Pf = ;@f,wn)m, of = ;(Qf, Q)

where {@,}, n = 1,2, ... are root vectors of the operator L, {1}, n = 1,2, ... are root vectors of the
operator L*.
Proof. From the formulas 1) and 2), we have

(PL)* = L*P* = L*P = PL; (LQ)* = Q*L* = QL* = LQ;

consequently, operators PL and LQ are self-adjoint in the space H.
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If Ly, = Ay, then PLy,, = A,Pyn, L*Py, = A,Pyy,, L*P(Py,) = A,PYyn,
consequently, as Py,, # 0, 4,, is an eigenvalue of the self-adjoint operator, therefore it is real.
If Ly, = A,y and Py, = 0, then PLy, = A,Py, =0, L(Py, + Qy,) = 1,(P + Q)y,,

LQyn = 4,Qyyn and Qy,, # 0,

hence, and in this case A, is an eigenvalue of the self-adjoint operator LQ, thus it is a real value.

By our assumption system of eigen and associated functions {¢,},n = 1,2, ..., of the operator L is
complete in the space H, then the system {P¢,},n = 1,2, ..., is complete in the subspace H; = PH (see
Lemma 2.1). Since all eigenvalues 4, (n =1,2,...) of the operator L are real, then spectra of the
operators L and L* are the same.

If Lo, = A,,¢,, then due to the formula PL = L*P we have PL¢, = A,P@,, L'"Po, = 1,P@,,
consequently, the vector P¢,, is eigenvector for the self-adjoint operator L*P.

If P, # 0, then due to Lemma 2.3, there is no associated function.

If Pg,, = 0, then there may be an attached vector ¢,,, such that

Loy — 24,05 = Kn@n, K, # 0.

Then PLip,, — 1,,PP,, = K,,Pp,, = 0, moreover, due to Lemma 2.2, we have P{,, #+ 0.
Operator L does not have associated vectors higher than first order. Indeed, if

L@l - An@r/l = Kn@lr K, #0,
then
Py, =0, Py, # 0,
thus
PL®, — A,P®,, = K,Pp,, # 0, => L*P®, — A,P®,, = K, P@,, + 0,=>

=> L'P(P®;,) — 1nP®;, = K,P®, # 0.

Consequently, P, # 0, and this contradicts self-adjointness of the operator L*P.

Therefore, if the sequence {¢,},n = 1,2, ..., consists of eigen and associated functions of the operator
L, then the sequence {P@,},n = 1,2, ... consists of eigenvectors of the self-adjoint operator L*P, hence it
is a complete and orthogonal system. Rejecting zero elements, if there is any of them, we get a complete
orthogonal system {P¢,},n =1,2,.. (cleaned system). Consequently, the system {P¢,/||P@,|l},
n = 1,2, ... is an orthonormal basis of the space H; = PH, i.e. for any vector f from H the following
decomposition holds

Py,
IP@nll’

Pf =) (Pf,Pgn)
n=1

2) Let a system of eigen and associated functions {i,,},n = 1,2, ..., of the operator L* be complete in
the space H, then the system {Qy,,},n = 1,2, ..., is complete in the subspace H, = QH.

If LYy = Ayy, then QL Y, = 2,Qy,

LQY, = 4,Q¢p, LQ (len) = 2, Qn;

If Qy,, # 0, then due to Lemma 2.3, there is not any associated vector. If Qi,, = 0, then maybe there
is an attached vector Y, i.e.

L*‘Ez - Anlj;;l = K.Y, K, #0,
then QL*{/;; - AnQ{/;r'l = K, Q¢ = 0,=>
LQYn = 2@ = 0,=> LQ(Q¥r) — 2,QP, =0,

moreover, due to Lemma 2.2, we have QI:DT, # 0.

— 84 ——
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Consequently, in any case the vector Qi, is eigenvector for the operator LQ. Due to self-adjointness
of the operator LQ, eigenvectors {Qy,} are mutually orthogonal, and according to our assumption and
Lemma 2.1, are complete in the subspace H, = QH, consequently, the system Qv /||Qy,ll, n = 1,2, ...
forms a orthonormal basis in the subspace H,, i.e.

Qbn
eyl

of = ) (0f. Q)
n=1

4. Discussion.
We consider the model Sturm - Liouville operator in the space L?(0,1).

Ly = —y"(x), x € (0,1), 4.1)

a11y(0) + a12y'(0) + a;3y(1) + a4y’ (1) =0,
) , 4.2)
a21Y(0) + az2y"(0) + az3y(1) + az,y'(1) =0,
where a;; (i = 1,2;j = 1,2,3,4) — are arbitrary complex numbers. By A;; we denote minors of the
boundary matrix:
((111 a12 a13 a14)
az;1 Qyp azs az4/°
Therefore,

Qi

_ 1
Al]_ |a2i aZj 1] (ll_] - 1125354)' (43)

If the following inequality holds
A= A12 + A13 + A14 + A32 + A34¢ 0,

then the operator (4.1) - (4.2) is invertible and its inverse operator L™1 is completely continuous.
Theorem 4.1. Invertible Sturm-Liouville operator satisfies the following equalities

PL=L*P, LQ = QL™, (4.4)
if and only if it has the form
Ly = -y"(x), x € (0,1), 4.1)
y(0) + ky'(0) + y(1) — ky'(1) =0,
{(1 —20)y(0) = 2a + k)y' (0) — (1 — 2Dy(1) — (2L = 2a — k)y'(1) = 0, Ve denoweas (4.3),

its adjoint has the form:
Lz =-z"(x), x € (0,1) 4.2)"

{ (1-2Dz(0)=1z'(0) —(1—-2Dz(1) = 1z'(1) =0, 4.5)
(1-k—-2a)z(00)—az'(0) + (k+2a)z(1) — (k+a)z'(1) =0, '
where k =k, [ =1 — is a real number, a — is an arbitrary complex number, P and Q are orthogonal
projections given by the formulas:

*s % (4.6)
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where I — is a unit operator, operator S is defined by the formula
Su(x) = u(1 —x), Yu(x) € L?(0,1). 4.7

Theorem 4.2. If for the invertible Sturm-Liouville operator (4.1) - (4.2) the following formulas hold

a)PL = L*P,
b) LQ = QL™; 4.4)
where
P=22,0="+ (4.6)
Su(x) = u(1 —x), vu(x) € L?(0,1), 4.7)

then the characteristic function of this operator is factorized as follows:

a)If kI(1 — 21) # 0, then

AA) =2l ——-—*= —cos=

in2
21— 1 siny A (
I 2 2

ki si /1+ A)'
sinZ + cos7 |

b) If | = =, then

cos5 y) y)
___ 2 2 ).
AQY) = 3 (Ak cos > + cos 2) ;

c)Ifl =0, k # 0, then

A
2 _ A cosy
A(A)——Zsmz ksmz+ > |
d)Ifl =0, k =0, then
A A
Zsmicosi
AA(A)z—f;

where k, | — are real coefficients of the boundary conditions (4.5), and the characteristic function A(4)
has the form:
sin A

AD) = Ajp + Az + g3 7

+ (A4 + Ag3) cos A+ AyuAsind,

where A, are minors from (4.3).
Theorem 4.3. Eigenvalues and eigenfunctions of the boundary value problem

Ly = —y"(x), x € (0,1),

{ y(0) +y(1) =0,
y(0) —y(1) — 2a[y'(0) —y' (D] =0,
consist of two series:

a) /153) = 2nm, y,(ll) = K,sin2nnx, n=1,2,...;
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=12, ..;

b) /1512) =(2n+ Dm, yrgz) =B, [Za cos(2nm + m)x + —Sin(znﬂ)m] ,

2n+1)n
where a — is an arbitrary complex number, K,,, B,, — are arbitrary constants.

In this case, the normalized system

{ Py, 0z},
forms an orthonormal basis of the space L?(0,1), where

(2) _ __Bn
Py = @2n+)n

sin2nm + m)x;n =0,1,2, ...;

0z = (—1)"K,, sin 2nmx,n = 1,2, ...
Theorem 4.3". Eigenvalues and eigenfunctions of the boundary value problem
L*z=-7"(x) = p*z(x), x € (0,1),

{ z(0) —z(1) =0,
z(0) — alz'(0) + z'(1)] = 0;
consist of two series:

a) ,u,(ll) =2nm+m,

® 1
zy(x) =Apcos(2n+ 1) m 5~ x);
b) ,u,(lz) =2nm, n=1.2,..
7, (x) = K, |4anm cos 2nm (E — x) — sin2nm (E — x)],

where a — is an arbitrary complex number, and K,, — are arbitrary constants.

Moreover, QZ,(ll) =0, er(lz) = (—1)"K,, sin 2nmx, which confirms results of the main Theorem 3.1.

We note that Sturm-Liouville operators of the class, that we studied, are reconstructed in a single
spectrum [34].

In conclusion, the authors thank the correspondent member of the NAS of Kazakhstan M.A.
Sadybekov, who drew their attention to this theme.

AL Manxxan6aes’, A.A.llannan6aesa’, B.A.llaxnaun6aii’
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*M.0.Aye30B aTbingarsl OHTyCTiK Kasakcran MemnekerTik yausepcuteri, IlIsivkenT ., Kasakcran

CBI3BIKTBIK CBIHAPJIBI OITEPATOPIBIH
OPTOT'OHOJIJI MPOEKIUSIIILIK BA3UCI TYPAJIBI

AnHoTtanus. by eHOexTe, MpIHaHAH
PL=L"P, LQ =QL"
IIIKI CHMMETPHSICHI 0ap CHI3BIKTBIK ChIHAPJIBI ONEPATOPIBIH CIEKTPAIAIK KaCHETTepl 3epTTeimi, MyHaarsl P* = P,
Q" = Q —oproroHanai mpoekropiap, an L'- ceiHap omeparop. OHrime ['mibeptTiH cenapabenmi H keHicTiriame
©OJIBIIT OTHIP.

MyHnait oneparopiiap/blH CIIEKTpi HaKThl CaHAAp OCIHJE KaTaThIHbl KOPCETI, COHNAM-aK MEHIIIKTI JKoHEe
OJIapMEH EHIIIJIEC BEKTOpJIap CHCTEMAachl KEHICTIKTE TOJBIK AMCKPETTI OIEpaTopiapAblH TYIKI BEKTOPIAPHIHBIH
NPOEKUMsUIaphl MEH OFaH CBHIHAP ONEepaTOpJbIH TYNKI BEKTOPJAapbIHBIH NpoeKuusuiapsl Oipirin, H KeHicririnae
OPTOTOHAI 06a3UC KYPANTHIHBI KOPCETUIAL, 9pHHE, OPTAHOPMAJIaHFaH COH,.

[ typm-JlryBHIDT ONlepaTOPIapEIHBIH iITiHEH OCBIHIAH CHMMETPHUSCH Oap omepaTopiap KIachkl 06l aabIHAbL.
MyHzaii onpaTtopiapAblH XapaKTePUCTHKAIBIK QYHKIUIIAPE KOOSHTKImTepre KiKTeneTiHi qonenaersi. Teopema-
HBIH MOHI MBICAJT apKbIJIbl aliKbIHIaJIa TYCTi.
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Tyiiin ce3nep: CBI3BIKTHIK CHIHAPJIBI ONEPATOP, HAKTHI CIIEKTP, TYIKI BEKTOPJIApP, TOJNBIMIBUIBIK, JJIEKTP CHI-
HAIJAPBIHBIH TEOPHACHI, TUIa3MaHBIH TEOPUSCHI, AUCKPETTI OMepaTop, iMIKIKEHICTIKTep, HHBAPUAHTTHI KEHiCTIKTED,
TYTIKi KEeHiCTIKTEP, MCHIITIKTI JKOHE EHIILIeC BEKTOPIIAP, iIKi CHMMETPIS, IPOEKTOP, PE36JIBEHTA.

AL Manxxan6aes’, A.A.lannan6aesa’, B.A.llaxnaun6aii’

'Mexaynapoausiit yausepcuter Silkway, r. Illsivxent, Kazaxcran;
2PernoHalbHbII COLMAIBHO-UHHOBALHOHHBIIT yHuBepcurerT, r. [lIsiMkenT, Kazaxcran;
*H0xH0-Kasaxcranckuii [ocyiapcTBenHslil yuuepcuter uM.M.Aye3osa, r. [llsiMkent, Kasaxcran

O IMPOEKIIMOHHO OPTOIOHAJIbHOM BA3HUCE JIMHEMHOI'O
HECAMOCOIIPSAKEHHOI'O OIIEPATOPA

Annoranus. B Hacrosmei paboTe nccienoBaHBl CIEKTPAEHBIE CBOWCTBA JIMHEHHOTO HECAMOCOIPSDKEHHOTO
oreparopa 00J1a1alonIero BHyTPEHHEH CUMMETpHEH Buaa

L=LP, LQ=QL%

rne P* =P, Q" = Q —oproroHajbHbIe NPOEKTOPHI, L* — oneparop, conpshKeHHbIH K oneparopy L B ruiib0epToBOM
npocTtpancTtBe H. Iloka3aH, 4TO CHEKTp TAaKOro olepaTropa BeLIeCTBEHHBIN. B ciaydae muckpeTrHoro omepartopa, ¢
MOJTHOW CHCTEMOH COOCTBEHHBIX W MNPUCOCIMHEHHBIX BEKTOPOB, NMPOCKIHMH COOCTBEHHBIX M IPHCOEANHEHHBIX
BEKTOpOB omeparopa L 1 ero compspkeHHOTO 00pa3yloT OpTOHOPMEpPOBAaHHBIN Oasmc. HaiimeH kimacc omepaTopoB
rypma — JlmyBmiis, oONMajalomIvii TaKOW CHUMMETPHEH, NPH STOM OOHApPYXKEHO, YTO XapaKTepUCTHYeCKas
($yHKUIMsA Takoro onepartopa paxropusyercs. [IpuBeneH WLTIOCTpaTHBHBIA IpUMeEp.

KiwueBble ciaoBa: JIMHEHHBIN HECaMOCONPSKEHHBIH OIEPATOpP, BEIICCTBEHHBINH CIEKTp, 0a3uC, KOPHEBBIC
BEKTOPBI, TIOJIHOTA, TEOPHs 3JIEKTPUUYECKUX CUTHAJIOB, TEOPHs IIAa3Mbl, JUCKPETHBIA ONEpaTop, WHBAPHAHTHBIC
MOJIIPOCTPAHCTBA, KOPHEBBIC  MOANPOCTPAHCTBA, BIOJHE HENPEPBIBHBIA  omepaTop, COOCTBCHHBIC U
MIPUCOETUHEHHBIE BEKTOPHI, BHYTPEHHSISI CHMMETPHS, TIPOEKTOP, PE30JIbBEHTA.
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