ҚАЗАҚСТАН РЕСПУБЛИКАСЫ ҰЛТТЫҚ ҒЫЛЫМ АКАДЕМИЯСЫНЫҢ # ХАБАРШЫСЫ # **ВЕСТНИК** НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК РЕСПУБЛИКИ КАЗАХСТАН # THE BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN 1944 ЖЫЛДАН ШЫҒА БАСТАҒАН ИЗДАЕТСЯ С 1944 ГОДА PUBLISHED SINCE 1944 NAS RK is pleased to announce that Bulletin of NAS RK scientific journal has been accepted for indexing in the Emerging Sources Citation Index, a new edition of Web of Science. Content in this index is under consideration by Clarivate Analytics to be accepted in the Science Citation Index Expanded, the Social Sciences Citation Index, and the Arts & Humanities Citation Index. The quality and depth of content Web of Science offers to researchers, authors, publishers, and institutions sets it apart from other research databases. The inclusion of Bulletin of NAS RK in the Emerging Sources Citation Index demonstrates our dedication to providing the most relevant and influential multidiscipline content to our community. Қазақстан Республикасы Ұлттық ғылым академиясы "ҚР ҰҒА Хабаршысы" ғылыми журналының Web of Science-тің жаңаланған нұсқасы Emerging Sources Citation Index-те индекстелуге қабылданғанын хабарлайды. Бұл индекстелу барысында Clarivate Analytics компаниясы журналды одан әрі the Science Citation Index Expanded, the Social Sciences Citation Index және the Arts & Humanities Citation Index-ке қабылдау мәселесін қарастыруда. Web of Science зерттеушілер, авторлар, баспашылар мен мекемелерге контент тереңдігі мен сапасын ұсынады. ҚР ҰҒА Хабаршысының Emerging Sources Citation Index-ке енуі біздің қоғамдастық үшін ең өзекті және беделді мультидисциплинарлы контентке адалдығымызды білдіреді. НАН РК сообщает, что научный журнал «Вестник НАН РК» был принят для индексирования в Emerging Sources Citation Index, обновленной версии Web of Science. Содержание в этом индексировании находится в стадии рассмотрения компанией Clarivate Analytics для дальнейшего принятия журнала в the Science Citation Index Expanded, the Social Sciences Citation Index и the Arts & Humanities Citation Index. Web of Science предлагает качество и глубину контента для исследователей, авторов, издателей и учреждений. Включение Вестника НАН РК в Emerging Sources Citation Index демонстрирует нашу приверженность к наиболее актуальному и влиятельному мультидисциплинарному контенту для нашего сообщества. #### Бас редакторы #### х. ғ. д., проф., ҚР ҰҒА академигі #### М. Ж. Жұрынов #### Редакция алқасы: Абиев Р.Ш. проф. (Ресей) Абишев М.Е. проф., корр.-мушесі (Қазақстан) Аврамов К.В. проф. (Украина) Аппель Юрген проф. (Германия) Баймуқанов Д.А. проф., корр.-мүшесі (Қазақстан) Байпақов К.М. проф., академик (Қазақстан) Байтулин И.О. проф., академик (Қазақстан) Банас Иозеф проф. (Польша) Берсимбаев Р.И. проф., академик (Қазақстан) Велихов Е.П. проф., РҒА академигі (Ресей) Гашимзаде Ф. проф., академик (Әзірбайжан) Гончарук В.В. проф., академик (Украина) Давлетов А.Е. проф., корр.-мүшесі (Қазақстан) Джрбашян Р.Т. проф., академик (Армения) Қалимолдаев М.Н. проф., академик (Қазақстан), бас ред. орынбасары Лаверов Н.П. проф., академик РАН (Россия) Лупашку Ф. проф., корр.-мүшесі (Молдова) Мохд Хасан Селамат проф. (Малайзия) Мырхалықов Ж.У. проф., академик (Қазақстан) Новак Изабелла проф. (Польша) Огарь Н.П. проф., корр.-мүшесі (Қазақстан) Полещук О.Х. проф. (Ресей) Поняев А.И. проф. (Ресей) Сагиян А.С. проф., академик (Армения) Сатубалдин С.С. проф., академик (Қазақстан) Таткеева Г.Г. проф., корр.-мүшесі (Қазақстан) Умбетаев И. проф., академик (Қазақстан) **Хрипунов Г.С.** проф. (Украина) Юлдашбаев Ю.А. проф., РҒА корр-мүшесі (Ресей) Якубова М.М. проф., академик (Тәжікстан) ### «Қазақстан Республикасы Ұлттық ғылым академиясының Хабаршысы». ISSN 2518-1467 (Online), ISSN 1991-3494 (Print) Меншіктенуші: «Қазақстан Республикасының Ұлттық ғылым академиясы»РҚБ (Алматы қ.) Қазақстан республикасының Мәдениет пен ақпарат министрлігінің Ақпарат және мұрағат комитетінде 01.06.2006 ж. берілген №5551-Ж мерзімдік басылым тіркеуіне қойылу туралы куәлік Мерзімділігі: жылына 6 рет. Тиражы: 2000 дана. Редакцияның мекенжайы: 050010, Алматы қ., Шевченко көш., 28, 219 бөл., 220, тел.: 272-13-19, 272-13-18, www: nauka-nanrk.kz, bulletin-science.kz © Қазақстан Республикасының Ұлттық ғылым академиясы, 2018 Типографияның мекенжайы: «Аруна» ЖК, Алматы қ., Муратбаева көш., 75. ### Главный редактор #### д. х. н., проф. академик НАН РК #### М. Ж. Журинов ### Редакционная коллегия: Абиев Р.Ш. проф. (Россия) Абишев М.Е. проф., член-корр. (Казахстан) Аврамов К.В. проф. (Украина) Аппель Юрген проф. (Германия) Баймуканов Д.А. проф., чл.-корр. (Казахстан) Байпаков К.М. проф., академик (Казахстан) Байтулин И.О. проф., академик (Казахстан) Банас Иозеф проф. (Польша) Берсимбаев Р.И. проф., академик (Казахстан) Велихов Е.П. проф., академик РАН (Россия) Гашимзаде Ф. проф., академик (Азербайджан) Гончарук В.В. проф., академик (Украина) Давлетов А.Е. проф., чл.-корр. (Казахстан) Джрбашян Р.Т. проф., академик (Армения) Калимолдаев М.Н. академик (Казахстан), зам. гл. ред. Лаверов Н.П. проф., академик РАН (Россия) Лупашку Ф. проф., чл.-корр. (Молдова) Мохд Хасан Селамат проф. (Малайзия) Мырхалыков Ж.У. проф., академик (Казахстан) Новак Изабелла проф. (Польша) Огарь Н.П. проф., чл.-корр. (Казахстан) Полещук О.Х. проф. (Россия) Поняев А.И. проф. (Россия) Сагиян А.С. проф., академик (Армения) Сатубалдин С.С. проф., академик (Казахстан) Таткеева Г.Г. проф., чл.-корр. (Казахстан) Умбетаев И. проф., академик (Казахстан) Хрипунов Г.С. проф. (Украина) Юлдашбаев Ю.А. проф., член-корр. РАН (Россия) Якубова М.М. проф., академик (Таджикистан) #### «Вестник Национальной академии наук Республики Казахстан». ISSN 2518-1467 (Online), ISSN 1991-3494 (Print) Собственник: POO «Национальная академия наук Республики Казахстан» (г. Алматы) Свидетельство о постановке на учет периодического печатного издания в Комитете информации и архивов Министерства культуры и информации Республики Казахстан №5551-Ж, выданное 01.06.2006 г. Периодичность: 6 раз в год Тираж: 2000 экземпляров Адрес редакции: 050010, г. Алматы, ул. Шевченко, 28, ком. 219, 220, тел. 272-13-19, 272-13-18. www: nauka-nanrk.kz, bulletin-science.kz © Национальная академия наук Республики Казахстан, 2018 #### Editor in chief #### doctor of chemistry, professor, academician of NAS RK #### M. Zh. Zhurinov #### Editorial board: **Abiyev R.Sh.** prof. (Russia) **Abishev M.Ye.** prof., corr. member. (Kazakhstan) **Avramov K.V.** prof. (Ukraine) **Appel Jurgen,** prof. (Germany) Baimukanov D.A. prof., corr. member. (Kazakhstan) **Baipakov K.M.** prof., academician (Kazakhstan) Baitullin I.O. prof., academician (Kazakhstan) Joseph Banas, prof. (Poland) Bersimbayev R.I. prof., academician (Kazakhstan) Velikhov Ye.P. prof., academician of RAS (Russia) **Gashimzade F.** prof., academician (Azerbaijan) Goncharuk V.V. prof., academician (Ukraine) Davletov A.Ye. prof., corr. member. (Kazakhstan) **Dzhrbashian R.T.** prof., academician (Armenia) Kalimoldayev M.N. prof., academician (Kazakhstan), deputy editor in chief Laverov N.P. prof., academician of RAS (Russia) Lupashku F. prof., corr. member. (Moldova) Mohd Hassan Selamat, prof. (Malaysia) Myrkhalykov Zh.U. prof., academician (Kazakhstan) Nowak Isabella, prof. (Poland) **Ogar N.P.** prof., corr. member. (Kazakhstan) Poleshchuk O.Kh. prof. (Russia) Ponyaev A.I. prof. (Russia) Sagiyan A.S. prof., academician (Armenia) Satubaldin S.S. prof., academician (Kazakhstan) **Tatkeyeva G.G.** prof., corr. member. (Kazakhstan) **Umbetayev I.** prof., academician (Kazakhstan) Khripunov G.S. prof. (Ukraine) Yuldashbayev Y.A., prof. corresponding member of RAS (Russia) Yakubova M.M. prof., academician (Tadjikistan) #### Bulletin of the National Academy of Sciences of the Republic of Kazakhstan. ISSN 2518-1467 (Online), ISSN 1991-3494 (Print) Owner: RPA "National Academy of Sciences of the Republic of Kazakhstan" (Almaty) The certificate of registration of a periodic printed publication in the Committee of Information and Archives of the $Ministry\ of\ Culture\ and\ Information\ of\ the\ Republic\ of\ Kazakhstan\ N\ 5551-\c X,\ issued\ 01.06.2006$ Periodicity: 6 times a year Circulation: 2000 copies Editorial address: 28, Shevchenko str., of. 219, 220, Almaty, 050010, tel. 272-13-19, 272-13-18, http://nauka-nanrk.kz/, http://bulletin-science.kz © National Academy of Sciences of the Republic of Kazakhstan, 2018 Address of printing house: ST "Aruna", 75, Muratbayev str, Almaty # **BULLETIN** OF NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN ISSN 1991-3494 https://doi.org/10.32014/2018.2518-1467.9 Volume 5, Number 375 (2018), 70 – 75 UDC 631.67 (574.51) K. Erzhanova¹, T. Atakulov¹, Zh. Ospanbaiev², Kestutis Romanecas³, A. Smanov¹ ¹Kazakh National Agrarian University, Almaty, Kazakhstan, ²LLP "Kazakh Research Institute of Farming and Plant Growing", Almalibak, Kazakhstan, ³Aleksandras Stulginskis University, Republic of Lithuania. E-mail: KEM 707@mail.ru # PHYTOMELIORATION OF SECONDARY SALINE IRRIGATED LANDS OF THE SOUTHEAST OF KAZAKHSTAN Abstract. The article describes phytomeliorative methods for increasing the productivity of saline irrigated lands by sowing phytomeliorants and treating seeds and spraying the above-ground part of crops with PA-2,1 (adaptogen) preparation. The results of observations of the growth and development of phytoemeliorants showed that phytoemeliorants intensively grew, developed and accumulated aboveground masses, especially on variants treated with adaptogen. The intensive growth and development of phytomeliorants contributed, at the end of the growing season, to a decrease in the salt content in the soil and an increase in the yield of soybeans, sorghum, and Sudan grass. The conducted economic calculations to determine the effectiveness of cultivation of phytomeliorants on degraded irrigated lands showed that cultivation of phytomeliorants on saline soils, along with a decrease in the content of salts in the soil, makes it possible to obtain net incomes with high profitability. The article presents the results of field research on the cultivation of basic and intermediate crops and the economic justification for obtaining two crops per year. Key words: phytomelioration, drip irrigation, fodder units, Sudan grass, sorghum, soy, adaptogen (PA-2.1). **Introduction.** The current condition of secondary saline irrigated lands in the southeast of Kazakhstan requires a new approach to the problem of melioration of saline soils. Due to the lack of a collector-drainage systems, improperly using of the irrigation systems and crop rotation in agriculture, irrigated lands were salinized and the area of irrigated land decreased from 2.3 million hectares to 1.3-1.4 million hectares. Therefore, in the message to the people of Kazakhstan on January 31, 2017, the President of the Republic of Kazakhstan Nazarbayev N.A. noted that within 5 years, it is necessary to increase the area of irrigated land by 40%, and reach to 2 million hectares [1]. According to the Concept on the transition to the "green" economy by 2030, 15% of the agricultural lands will be transferred to water-saving technologies. It is also necessary to develop agrarian science and create experimental agro- innovative clusters [2]. In connection with the above-mentioned programs for the development of the agriculture in the country, especially in irrigated systems, the development and introduction of new methods to improve the productivity of saline irrigated land is an actual challenge. Therefore, there exists a solution which is the introduction of phytomeliorative crop rotations, where salt-tolerant phytomeliorants are cultivated to promote the reduction of salts in the soil and increase its fertility. The research results show that the agribiological methods for improving degraded irrigated lands are a resource-saving and inexpensive method for the restoration of saline lands [3-5]. **Materials and methods.** The phytomeliorative role of the safflower and sweet clover that contributed to a decrease of salt content in saline soils by 6-8% has been revealed by experiments carried out earlier [6, 7]. The field research on developing techniques for increasing the productivity of saline irrigated lands by cultivating phytomeliorants was carried out on gray-brown soils of Akdalinsk in Almaty oblast. The climate of the Akdalinsk is sharply continental with a wide temperature difference between day and night, summer and winter, with a cold little snowy winter and a hot and dry summer. The sum of temperatures above 10 °C is 3400-3500 °C. The annual amount of precipitation is 250 mm, 64% of which fall in the spring-summer period. The soil of the experimental land is characterized by a low content of humus (0.54 to 1.16%) and other elements. The subject of the research was gray-brown soils, phytomeliorants, sudangrass, sorghum, soybeans, drip irrigation and preparation PA-2,1 (adaptogen). The total area of the experiment was 0.3 hectares. The area of the plots was 120 m², and the repetition was threefold. Records, observations, and analyses were performed by conventional methods in the experiments. The content of humus and other elements was low in the soil. Irrigation was carried out by a drip irrigation methods by maintaining soil moisture not less than 70% of the lowest moisture capacity of the soil. The studies on the growth and development of phytomeliorants were made according to the generally accepted Rudnev's method [8]; soil moisture was determined by the thermostatic-weight method [9]; observation of the dynamics of accumulation of biomass of phytomeliorants was made according to the generally accepted method [10]. The selection of soil samples before sowing and harvesting along the soil horizons was carried out by soil drill to determine the salt content. The analyses were carried out in an accredited soil analysis laboratory of the Kazakh Research Institute of Agriculture and Plant Growing. The norms of vegetative irrigation were determined by the moisture deficiency in the soil according to the Kostyakov's formula [11]; the processing of harvest data was made according to Dospekhov's method [12]. The water-physical qualities of the soil were determined by conventional methods [13-18]. There was studied the dynamics of the content of salts in the soil before sowing and harvesting. Also, there was experimented the effect of adaptogen on the growth and development of phytomeliorants. Seeds were treated with a two percent solution of adaptogen and sprinkled with vegetative plants with 0.03-0.05 percent of aqueous solutions. Adaptogen increases bioenergetics and ecological resistance of plants to soil salinity. Also, the preparation increases plant's germination energy with pre-sowing seed treatment. Spraying after germination of plants gives them additional energy for vegetation [19]. The preparation increases germination energy of seeds, promotes the increased growth of roots and the other parts of plant. This also influences the on growth of the utilization rate of nutrients from the soil of introduced fertilizers and affects the ripening of cereals for 7-9 days [20]. **Results and discussion.** The field experiments conducted on saline soils of the Akdalinsk irrigation massive where there were studied the effects of various phytomeliorants on the content of salts in soil and adaptogen for growth and development and yield of phytomeliorants. The results of the conducted field experiments showed that the treatment of planting seeds of phytomeliorants promotes the emergence of crop germination two days earlier in comparison with the variants of seeds that were not treated with adaptogen solutions. There was an observation of the growth and development of phytomeliorants in the main phases of their development. The results of analysis before harvesting showed that the accumulation of raw mass on an area of 0.3 m² in sudangrass, sorghum and soybean was 1043, 769, 690 grams with adaptogen, respectively, while without the adaptogen it was 982, 742, 681 grams (table 1). Table 1 – Results of experiments of the growth and accumulation of biomass phytomeliorants. | 24.08.2016, 0.30 m ² , average data | | | | |--|---------------------------------|---------------|----------| | Variants of experience, | Seed treatment with preparation | Plant height, | Weight | | phytomeliorants | PA-2,1 (adaptogen) | cm | raw mass | г | Variants of experience, | Seed treatment with preparation | Plant height, | Weight, gram | | |--|---------------------------------|---------------|--------------|------------| | phytomeliorants | PA-2,1 (adaptogen) | cm | raw mass | dry weight | | Sudangrass (ejection of panicle, 2 slopes) | with treatment | 270 | 1043 | 688 | | | without treatment | 262 | 982 | 648 | | Sorghum | with treatment | 190 | 769 | 501 | | (grain filling) | without treatment | 183 | 742 | 490 | | Soybean (wax ripeness) | with treatment | 103 | 690 | 414 | | | without treatment | 94 | 681 | 409 | The intensive growth and development were observed in phytomeliorants of sudangrass, where the plant height averaged up to 270 cm, and on the variant without adaptogen treatment was 262 cm. Also, there was an intensive accumulation of raw and dry above-ground mass (table 1). The intensive growth and development were observed in soybean. Soybean at the expense of active growth and development has suppressed weed plants. The crop also showed a good seed formation. There were selected soil samples at the beginning of the year, during the sowing and before harvesting, to determine the primary and residual salt content in the soil. This experiment was done to study and determine the influence of phytomeliorants on the dynamics of changes in the content of salts in the soil. Comparative data on the content of a dense residue of salts before the sowing of phytomeliorants (May 23, 2016) and residual salts before harvesting (August 25, 2016) showed that phytomeliorants contributed to the reduction of salts in the upper horizon 0-20 cm from 0.06% in sudangrass, 0.10% in sorghum and 0.27% in soybean. On the lower layer of soil with 20-40 cm, the reduction of salts was in the range of 0.04-0.05%. There was a decrease in salts by 0.27% in field of soybean (table 2). | Phytomeliorants | Danth | Solid r | esidue, % | Ions HCO ₃ , % | | Sulfate ions, % | | Sodium, % | | |-----------------|-------|------------------|----------------------|---------------------------|----------------------|------------------|----------------------|------------------|----------------------| | | CIII | before
sowing | before
harvesting | before
sowing | before
harvesting | before
sowing | before
harvesting | before
sowing | before
harvesting | | Sovbean | 0-20 | 0,78 | 0,51 | 0,13 | 0,06 | 0,21 | 0,18 | 0,18 | 0,01 | | | 20-40 | 0,94 | 0,67 | 0,06 | 0,03 | 0,40 | 0,09 | 0,22 | 0,01 | | Sorghum | 0-20 | 0,31 | 0,21 | 0,02 | 0,05 | 0,19 | 0,16 | 0,09 | 0,06 | | | 20-40 | 0,20 | 0,16 | 0,05 | 0,05 | 0,09 | 0,12 | 0,09 | 0,07 | | Sudangrass | 0-20 | 0,19 | 0,13 | 0,03 | 0,05 | 0,16 | 0,16 | 0,01 | 0,06 | | | 20-40 | 0,21 | 0,16 | 0,03 | 0,05 | 0,19 | 0,08 | 0,01 | 0,07 | Table 2 – The content of salts in the soil horizontally before sowing and harvesting phytomeliorants The intensive growth and development of phytomeliorants which seeds were treated with adaptogen promoted the reduction of salts in soil. In addition, irrigation was carried out by drip irrigation system where water was supplied by small norms and the upper layer of the soil was moistened. Ground (saline) water does not rise to the root zone of plants with such soil moistening. The intensive growth and development of phytomeliorants have had an impact on their yields (table 3). In the given data in table 3, the formation of a high above ground mass of phytomeliorants of sorghum and sudangrass without treatment with adaptogen formed a high yield of green mass where average yield was 947.0 t/ha in sudangrass and 740.4 c/ha in sorghum. The processing of seeds and the aboveground mass of the crops contributed to an increase in the yield of sudangrass to 990.3 c/ha and sorghum to 777.6 c/ha. Also, a high yield was obtained in soybeans where varieties without treatment were on average 54.7 c/ha on, and with treatment increased to 56.6 c/ha. | Variants of experience, phytomeliorants | Seed treatment with preparation PA-2,1 (adaptogen) | Productivity, green mass, grain, centner / ha | Gathering of fodder units, centners / hectare | | |---|--|---|---|--| | Sorghum (green mass) | With treatment | 777,6 | 176,6 | | | | Without treatment | 740,4 | 168,2 | | | Sudangrass
(two slopes per green mass) | With treatment | 990,3 | 219,0 | | | | Without treatment | 947,0 | 210,0 | | | G 1 (;) | With treatment | 56,6 | 73,0 | | | Soybean (grain) | Without treatment | 54,70 | 70,2 | | | | SSD ₀₅ 5,87 | | | | | Note: The fodder units from | the soybean stems are not taken into | account when calculating the | collection of feed units. | | Table 3 – The yield of green mass and grain of phytomeliorants in drip irrigation (average data for 2015-2017) The most important indicators of the final results and the overall efficiency of production in a market are the profitability of the products. The calculations showed that along with improving the meliorative condition of saline soils, it is possible to obtain additional cost-effective crops (table 4). | Variants of experience, phytomeliorants | Seed treatment
with preparation
PA-2,1
(adaptogen) | Average
yield for
2015-2017.
c/ha | Total cost of production, thousand tenge / ha | Total
costs,
thousand
tenge / ha | Income,
thousand
tenge / ha | Level of profitability, % | |---|---|--|---|---|-----------------------------------|---------------------------| | Sorghum (green mass) | With treatment | 777,6 | 31,1 | 19,10 | 12,0 | 62,8 | | | Without treatment | 740,4 | 29,6 | 18,8 | 10,8 | 60,0 | | Sudangrass (two slopes per green mass) | With treatment | 990,3 | 39,6 | 23,2 | 16,4 | 71,0 | | | Without treatment | 947,0 | 37,8 | 22,3 | 15,5 | 69,5 | | Soybean (grain) | With treatment | 56,6 | 448 | 205 | 243 | 118,5 | | | Without treatment | 54,7 | 437 | 201 | 237 | 117,0 | Table 4 – Economic efficiency of phytomeliorants cultivation with the use of adaptogen Calculations of economic efficiency of cultivation of phytomeliorants on degraded soils have shown that further effective use of irrigated lands and improvement of meliorative condition, it is necessary to introduce inexpensive agrobiological and agromeliorative methods of land restoration, which have come out of order. The highest net income was received from soybeans with 237-243 thousand tenge per hectare, and the crop showed accordingly a high level of profitability with 117.0 % and 118.5% out of all the cultivated phytomeliorants (table 4). These economic indicators show that among the researched phytomeliorants, the highest number was given in soybean for seeds. Also, the highest for green mass was given in sudangrass. #### Conclusion. - 1. The results of cultivation of phytomeliorants on soils which susceptible to salinization have shown that sorghum, sudangrass, and soybean are intensively growing and accumulate above ground masses. Moreover, the intensive growth and development were observed on the variant where the seeds of phytomeliorants were treated with the preparation of adaptogen. Increasing the energy of germination of seeds, the preparation PA-2.1 promoted the emergence of seedlings two days earlier than in the untreated variants. - 2. The intensive growth, development, and accumulation of the above ground mass was observed in phytomeliorants of sudangrass, where the plant height averaged up to 262 cm, and on the variant with adaptogen treatment was 270 cm; - 3. The intensive development of phytomeliorants contributed to a decrease in salts on the upper horizon of the soil (0-20 cm) from 0.06 to 0.27%. On the lower soil layer (20-40 cm) was from 0.04 to 0.27%. - 4. The intensive growth and development of phytomeliorants contributed to the production of high yields. Thus, the average yield of green sorghum without treatment was within 740.4 c/ha, and with processing was 777.6 c/ha. The yield of sudangrass without treatment was 947.0 c/ha, and with treatment was 990.3 c/ha. The yield of soybean grain varied within the range of 54.7-56.6 c/ha. - 5. Calculations of the economic efficiency of cultivation of phytomeliorants on saline soils showed that the highest net income was received from soybean grain where it was 237-243 thousand tenge per hectare. Also, there was accordingly a high level of profitability with 117 and 118.5%, and the green mass was highest in sudangrass. #### REFERENCES - [1] Nazarbayev N. The message to the people of Kazakhstan. Kazakhstan's truth, No. 20 of January 31, 2017. - [2] Nazarbayev N. Kazakhstan way-2050: One goal, common interests, common future. The Address of the President of the Republic of Kazakhstan of January 17, 2014, Astana, January 17, 2014 "Kazakhstanskaya Pravda" dated January 18, 2014 No. 11 (27632). - [3] Atakulov T., Ospanbaev Z., and Erzhanova K. Agrobiological method for the improvement of degraded irrigated lands of the Akdalinsky irrigation array // V International scientific ecological conference dedicated to the 95th anniversary of the Kuban State Agrarian University "Problems of Recultivation of Household Waste, Industrial and Agricultural Production". Krasnodar, 2017. P. 183-184. - [4] Atakulov T., Ospanbaev Z., and Erzhanova K. Resource-saving techniques for increasing the productivity of degraded irrigated lands in southeast Kazakhstan // Izvestiya NAS RK, Almaty, 2017. N 5, P. 44-47. - [5] Atakulov T., Ospanbaev Z., and Erzhanova K. Methods for improving degraded irrigated lands in southeast Kazakhstan, Recommendation. Almaty, 2017. 10 p. - [6] Atakulov T., Zhumabekov E.. Selection and testing of phytomeliorating crops and their relation to salinization of soils. Almaty, 1984. P. 53-54; 56-64. - [7] Erzhanova K. The attitude of safflower to soil salinity. "Problems of increasing the competitiveness of the agroindustrial complex in the context of accession to the WTO". Almaty, 2007. P. 220-222. - [8] Rudnev A.I. Determination of the phases of development of agricultural plants. M., 1950. 150 p. - [9] Astapov S.V. Meliorative Soil Science (Workshop). M., 1958. 178 p. - [10] Guidance on monitoring and processing of observations of the phases of development of agricultural crops. Alma-Ata, 1982. 150 p. - [11] Kostyakov A. Fundamentals of land reclamation. M.: Sel'khozgiz, 1960. 222 p. - [12] Dospekhov B.S. Methodology of field experience. M.: Agropromizdat, 1985. P. 10-25. - [13] Tyurin I.V., Arinushkina E.V. Guidelines for the chemical analysis of soils. M.: ed. Moscow state university, 1970. P. 397. - [14] Zalyagina V.B. Ionometric express method for determination of nitrate nitrogen in soils and plants // In: Agrochemical methods of soil investigation. M.: Science, 1975. P. 25-33. - [15] Machigin B.M. Methods for determining phosphorus in soil // In: Agrochemical methods of soil investigation. M.: Nauka, 1975. P. 33-43. - [16] Vazhenin I.G. Methods for the determination of potassium in soil by the photometric method // In: Agrochemical methods of soil investigation. M.: Nauka, 1975. P. 43-48. - [17] Kurichev I.S., Panov N.P. Soil density. In: Workshop on Soil Science. M.: Kolos, 1980. P. 72-82. - [18] Savvinov N. Method for determining the structural nature of the soil. In: Agrochemical methods of soil investigation. M.: Science, 1975. P. 10-18. - [19] Mamonov A.G., Saparov A.S. et al. Recommendations for the cultivation of soybean and maize during irrigation on degraded soils in the southeast of Kazakhstan. Almaty, 2014. P. 14. - [20] Shakharov R., Mamonov A.G. Development of new technologies, Recommendations. Almaty, 2016. 5 p. ## К. Ержанова¹, Т. Атакулов¹, Ж. Оспанбаев², Кестутис Романецкас³, А. Сманов¹ ¹Казахский национальный аграрный университет, Алматы, Казахстан, ²ТОО «Казахский научно-исследовательский институт земледелия и растениеводства», п. Алмалыбак, Казахстан, ³Университет Александрас Стульгинскис, Литва # ФИТОМЕЛИОРАЦИЯ ВТОРИЧНО ЗАСОЛЕННЫХ ОРОШАЕМЫХ ЗЕМЕЛЬ ЮГО-ВОСТОКА КАЗАХСТАНА Аннотация. Приводятся фитомелиоративные приемы повышения продуктивности засоленных орошаемых земель путем посева фитомелиорантов и обработкой посевных семян и опрыскиванием надземной части культур препаратом ПА-2,1 (адаптоген). Результаты наблюдений за ростом и развитием фитомелиорантов показали, что фитомелиоранты интенсивно росли, развивались и накапливали надземные массы, особенно на вариантах с обработкой адаптогеном. Интенсивный рост и развитие фитомелиорантов способствовали, в конце вегетации, уменьшению содержания солей в почве и увеличению урожайности сои, сорго и суданской травы. Проведенные экономические расчеты по определению эффективности возделывания фитомелиорантов на деградированных орошаемых землях показали, что возделывания фитомелиорантов на засоленных почвах, наряду с уменьшением содержания солей в почве, дают возможность получать чистые доходы с высокой рентабельностью. **Ключевые слова:** фитомелиорация, капельное орошение, кормовые единицы, суданская трава, сорго, соя, адаптоген (ПА-2,1). ### К. Ержанова¹, Т. Атақұлов¹, Ж. Оспанбаев², Кестутис Романецкас³, Ә. Сманов¹ ¹Қазақ ұлттық аграрлық книверистеті, Алматы, Қазақстан, ²«Қазақ егіншілік және өсімдік шаруашылығы ғылыми-зерттеу институты» ЖШС», Алмалыбақ ауылы, Қазақстан, ³Александрас Стульгинскис Университеті, Литва ### ҚАЗАҚСТАННЫҢ ОҢТҮСТІК-ШЫҒЫСЫНДА ҚАЙТАДАН СОРТАҢДАНҒАН СУҒАРМАЛЫ ЖЕРЛЕРДІ ФИТОМЕЛИОРАЦИЯЛАУ Аннотация. Мақалада, сортанданған (тұзданған) суғармалы жерлерді пайдалануды фитомелиорация әдісі арқылы жоғарылату, әртүрлі фитомелиорант дақылдарын егіп, олардың егілетін тұқымдарын және өскіндерін адаптоген ПА-2,1 препаратымен өндеп-өсіріп ол жерлердің өнімділігін арттыру жолдары қаралады. Жүргізілген зерттеулердің нәтижелері бойынша, адаптоген ПА-2,1 препаратымен өнделген нұсқаларда фитомелиоранттардың қарқынды өніп-өсуі байқалды. Фитомелиоранттардың қарқынды өніп-өсуі, вегетация соңында, топырақтағы тұздардың азаюына және майбұршақ, қонақ жүгері, судан шөбі дақылдарының өнімділігінің артуына себебін тигізді. Тозған (сортанданған) суғармалы жерлерде фитомелиоранттарды егіп-өсіру, топырақ құрамындағы тұздарды азайту мен қатар, экономикалық жағынан тиімді екені дәлелденді, өйткені ол жерлерден алынған өнімнің таза пайдасы және рентабельдік деңгейі жоғары болды. **Түін сөздер:** фитомелиорация, тамшылатып суғару, азықтық өлшем, судан шөбі, қонақ жүгері, майбұршақ, адаптоген (ПА-2,1). #### Information about authors: Erzhanova Kenzhe – Ph.D. associate professor, scientific secretary of the Research Institute of Agroinnovation and Ecology of KazNAU; KEM_707@mail.ru; 0000-0002-5333-0906 Atakulov Tastanbek – Academician of the Academy of Agricultural Sciences of the Republic of Kazakhstan, Doctor of Sciences, Professor of the Department of Agronomy, KazNAU, e-mail: KEM_707@mail.ru Ospanbaev Zhumagali – doctor of physical and mathematical sciences, professor, head of the department of irrigated agriculture of the Kazakh Research Institute of Agriculture and Plant Growing, e-mail: KEM_707@mail.ru Kestutis Romanecas – Professor, Deputy Dean of the Faculty of Agronomy at the University Aleksandras Stulginskis, Republic of Lithuania. KEM_707@mail.ru Smanov Ashirali – PhD doctoral student 1 course of the Kazakh National Agrarian University, e-mail: KEM_707@mail.ru # Publication Ethics and Publication Malpractice in the journals of the National Academy of Sciences of the Republic of Kazakhstan For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics. Submission of an article to the National Academy of Sciences of the Republic of Kazakhstan implies that the described work has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis electronic preprint, or see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted. No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The National Academy of Sciences of the Republic of Kazakhstan follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the Cross Check originality detection service http://www.elsevier.com/editors/plagdetect. The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research. The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders. The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the National Academy of Sciences of the Republic of Kazakhstan. The Editorial Board of the National Academy of Sciences of the Republic of Kazakhstan will monitor and safeguard publishing ethics. Правила оформления статьи для публикации в журнале смотреть на сайте: www:nauka-nanrk.kz ISSN 2518-1467 (Online), ISSN 1991-3494 (Print) http://www.bulletin-science.kz/index.php/ru/ Редакторы М. С. Ахметова, Т. М. Апендиев, Д. С. Аленов Верстка на компьютере Д. Н. Калкабековой Подписано в печать 10.10.2018. Формат 60х881/8. Бумага офсетная. Печать – ризограф. 11,2 п.л. Тираж 500. Заказ 5.