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DEVICES FOR MULTIPLYING MODULO NUMBERS  
WITH ANALYSIS OF THE LOWER BITS  

OF THE MULTIPLIER 
 

Abstract. Various approaches of modulo multiplying multi-bit (large) numbers in modulus are considered. An 
algorithm for multiplying numbers is given, where the modular multiplication process is divided into steps, and in 
each step, by combining the multiplication operations of the previous partial remainder by two with the operation of 
reducing the multiplication results modulo, partial remainders is formed. The circuit diagrams of multipliers of 
numbers modulo with the analysis of the lower bits of the multiplier with the sequential and matrix formation of re-
mainders are considered. The proposed modulo multipliers do not require pre-calculations and all calculations do not 
go beyond the bit grid of the module. 

Keywords: public-key cryptosystem, hardware encryption, modular multiplication, remainder former. 
 
Introduction. In asymmetric cryptosystems, data encryption and decryption procedures are per-

formed by modular exponentiation of the number a to the power x modulo P (ax modP), which can be 
implemented in hardware and/or software [1, 2]. Hardware encryption has several significant advantages 
over software encryption, one of which is higher speed [3]. Hardware implementation ensures its integrity. 
At the same time, the generation and storage of keys, as well as encryption, are carried out in the encoder 
board itself, and not in the computer’s RAM. Thus, the security of the implementation of the algorithm 
itself is ensured, which is also an important advantage. Therefore, the development of high-speed opera-
ting units of hardware cryptoprocessors for asymmetric encryption, despite their high cost, is an urgent 
task.  

Approaches to the multiplication modulo. Modular multiplication of numbers can be done in three 
ways. In the first method, the operation is divided into two stages. At the first stage, n-bit numbers A and 
B are multiplied and a 2n-bit number C is formed. At the second stage, the product C = A*B is reduced by 
the module P. 

Nowadays, a great deal of experience has been gained in the development of high-speed integer 
multipliers and devices for squaring. These include Brown, Wallace multipliers, Dadda multipliers, 
systolic and vedic multipliers and quadrants, where the computational complexity is О (݊ଶ) bit operations. 
But these multipliers are very effective in calculating "low-bit" numbers, which are widely used in the 
construction of operating units of computers of various classes [4]. 

In cryptography for multiplication of multi-bit numbers, which allow to calculate the required product 
faster than О (݊ଶ) steps (bit operations), the Karatsuba method [5], whose complexity is Oሺ݊୪୭୥మ ଷሻ, the 

Toom -Cook algorithm [6] with complexity of order Oሺ݊2ඥଶ୪୭୥మ ௡ሻ bit operations. And the Shengghe-
Strassen algorithm [7] allows to multiply two n-bit numbers for O(nlogn logn) bit operations. 
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The modular reduction operation, which is performed in the second stage, is the receipt of the 
remainder of dividing the product C = A*B by the module P. In [8], various ways of modular reduction of 
the numbers were analyzed. It is shown that the most effective construction tool is a modular device based 
on a dividing device. Part of such a dividing device includes a partial remainder former. Based on partial 
remainder formers, high-performance matrix and pipeline devices of modular reduction are easily 
implemented [9-13]. 

In the second modular multiplication method, using the Barrett or Montgomery algorithms [14-16], 
the process of multiplying large numbers by the module is accelerated. However, these algorithms require 
preliminary calculations associated with the need to use the algorithm for dividing large numbers, 
therefore representing the greatest complexity: 

– Barrett algorithm requires constant predictions 
 

ߤ ൌ ቞
݀ଶ௠

ܰ
቟ 

where d = 2k, k-size of a word in bits, m-number of words in module. The effectiveness of the Barrett 
algorithm depends entirely on how effectively the preliminary calculations will be performed, which are 
performed by dividing large numbers. 

– for the Montgomery algorithm, prediction of the constant “ݎଶሺ݉ܰ݀݋ሻ”, is required, using division 
with remainder. 

In the third method, the process of multiplying modulo numbers is performed in sets of steps, where 
its number is determined by the number of bits of the multiplier. 

Depending on which bit of the multiplier multiplication begins, two types of the multiplier structure 
can be distinguished: 

- modulo multiplier, where multiplication begins with the analysis of the lower bits; 
- modulo multiplier, where multiplication begins with the analysis of the higher order bits of the 

multiplier. 
The paper deals with the first type of multiplier. In such a multiplier, the following actions are perfor-

med at each multiplication step: 
 the partial remainder former PRFi calculates the partial remainder ݎ௜. For what the previous          

partial remainder ݎ௜ିଵ, shifted by one bit towards the higher order bits, is reduced modulo P, i.e.                      
௜ݎ ൌ ଴ݎ ଵ, the previous partial remainder isݎ When forming the first partial remainder .ܲ݀݋௜ିଵ݉ݎ2 ൌ  ܣ
(multiplicand), then the value of remainder ݎ௜ is determined by the formula	ݎଵ ൌ  .ܲ݀݋଴݉ݎ2

 the partial remainder ݎ௜ is logically multiplied by the i-bit of the multiplier B by the block Andi. 
The input of the block And0 is ݎ଴ ൌ  .and the value of the bit b0 of the multiplier ܣ

 the partial remainder ݎ௜ from the outputs of the block Andi and the intermediate remainder ܴ௜ିଵ 
from the previous modulo adder MAddi-1 is fed to the inputs of the modulo adder МAddi, where the 
operation on the formation of the intermediate remainder ܴ௜ ൌ ሺݎ௜ ൅ ܴ௜ିଵሻ݉ܲ݀݋ and the result of 
operations is fed to the inputs of AddMi + 1. 

After performing N at the outputs of the modulo adder the result is generated ܴ ൌ ܴேିଵ ൌ                 
ൌ ேିଵݎ ൅ ܴேିଶ݉ܲ݀݋. 

In turn, a modulo multiplier with the analysis of the lower bits of the multiplier can be constructed in 
two ways. 

In the first method, all partial and intermediate remainders are formed sequentially as the next lower 
bits of the multiplier are analyzed on the same partial remainder former and modulo adder. 

In the second method, a separate driver is allocated for the formation of each partial residue, and each 
intermediate residue is formed on its modulo adder, where the drivers and adders in the multiplier are 
arranged in a matrix. 

The modulo multiplier of numbers sequential action, where multiplication begins with the 
analysis of the lower bits of the multiplier. The functional diagram of the multiplier of numbers modulo 
a sequence of actions is shown in figure 1. The multiplier includes the shift register RegВ, where before 
the start of operations the number B (multiplier) is stored, the register RegР where the module Р is stored, 
cumulative partial remainder former (CPRF) and the cumulative modulo adder (CMAdd), flip-flop T, 
counter of clock pulses (CCP), delay lines DL.1, DL.2, DL.3, blocks of logic circuits ݀݊ܣଵ ൊ  .ଵ଴ and OR݀݊ܣ
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Figure 1 – Functional diagram of the multiplier of numbers modulo sequential action 
 
Figure 2 shows the structure of the CPRF, which consists of the binary adder CM, the multiplexer 

MS, and the register of partial remainders RegPR. 
The previous partial remainders	ሺݎ௜ିଵሻ is fed to the left inputs of the adder with a shift by one bit in 

the direction of the higher order bits (2 ∗  ௜ିଵ). The second inputs of the adder Add are supplied with theݎ
bits of the return code of the module Рഥ, and the low signal of the adder receives a single signal +1, which 
translates the return one complement code of the module into a two complement. In the process of adding 
2 ∗ ௜ିଵ with ܲ in the two complement, if 2ݎ ∗ ௜ିଵݎ ൐ ܲ, then the carry C = 1 occurs from the high-order bit 
of the adder, which controls the transfer to MS multiplexer output differenceݎ௜ ൌ ௜ିଵݎ2 െ ܲ. If 2ݎ௜ିଵ ൏ ܲ, 
then we get the difference 2ݎ௜ିଵ െ ܲ with a negative sign (Sn = 1), which controls the transfer of the input 
code 2ݎ௜ିଵ and the result of the operation is stored in the register RegPR. 

The structure of the cumulative modulo adder (CMAdd) is shown in figure 3. The CMAdd differs 
from the CPRF only by the adder Add, where the current partial remainder ݎ௜ is summed with the previous 
intermediate remainder (ܴ௜ିଵ). Then this sum is reduced modulo P, i.e. ܴ௜ ൌ ሺݎ௜ ൅ ܴ௜ିଵሻ݉݀݋	ܲ and the 
value ܴ௜ is stored in the intermediate remainder register - RegR. 

Consider the operation of the multiplier. On the “Start” signal, the operands B and P are received by 
the blocks of logic circuits And3 and And5, respectively, in the registers RegВ and RegР. At the same 
time, the low-order bit of the multiplier B-b0 is fixed in the low-order bit of the register RegВ. The bits of 
the multiplicand A from the outputs of the block of circuit And4 are fed to the inputs of the block of 
circuits And7 and shifted by one bit in the direction of the higher bits to the inputs of  the  block of circuits 



ISSN 1991-3494                                                                                                                                                     4. 2019 
 

 
41 

Add

MS

2ri‐1

+1

Ri 

RegPR

Рഥ 

Зн

П

PRF

CPRF

 
 

Ri 

Add1

ri  Ri‐1 

OR

RegR

r0

Рഥ 

PRF

 
 

Figure 2 – CPRF structure Figure 3 – CMAdd structure 
 
 

And6. The input of the block of circuits And7 also supplies the value of the bit b0, and its inverse value ܾ଴തതത 
is fed to the input of the block of circuits And6. The “Start” signal also records the number of shifts - N-1 
(where N is the bits number of the multiplier) in the counter of clock pulses of the CCP. 

After receiving the multiplier B in the register RegB, if ܾ଴ ൌ 1, then the bits of the multiplicand 
А=ݎ଴through the circuit of the block And7 is fed to the input of the register of the intermediate remainder 
RegR of the CMAdd. In addition, the value А=ݎ଴with a shift by one bit in the direction of the higher order 
through the circuits And7 and OR1 is fed to the inputs of the CPRF where ݎଵ ൌ ܲ	݀݋଴݉ݎ2 ൌ ଴ݎ2 ൅ Рഥ ൅ 1. 
is formed. ݎଵ is stored in the register RegPR of the CPRF. 

When values ܾ଴ ൌ 0 from the outputs of the block of the circuits And4, the value of A is shifted to the 
high-order side through the circuits And6 and OR1 is fed to the inputs of the CPRF, where ݎଵ ൌ  ܲ	݀݋଴݉ݎ2
is formed, which is also stored in the registers of the RegPR of the CPRF. The low bit level ܾ଴ ൌ 0 prohi-
bits the output ݎ଴ ൌ А to the output of the block of circuits And7. By the time of formation and storage of 
the first partial remainder ݎଵ from the output of the delay lines DL.1, the “Start” signal is fed to the flip-
flop T input, which translates the flip-flop T to the single state, and allows the passage of the 1st clock 
pulse CP1 to the multiplier circuit. CP1 reduces the readings of the counter CCP by one and shifts the 
contents of the RegB register to the right by one bit. At the time of the shift of the register RegB, CP1 
delaying on the delay lines DL.2 arrives at the control inputs of the block of circuits And8 and And9. If, 
after the shift in the low order РгВ, ܾଵ ൌ 1 is fixed, then the contents of RegPR of the CPRF are trans-
mitted through the block of circuits And8 to the input of the CMAdd, where the intermediate remainder 
ܴଵ ൌ ሺܴ଴ ൅  is formed, which is stored by RegR. At the same time, the pulse CP1from the ܲ	݀݋ଵሻ݉ݎ
output of the RegPR of the CPRF through the block of the And8 and OR1 circuit doubles the value 2ݎଵ to 
the inputs of the CPRF, ݎଶ ൌ  ଶare stored in the RegPR of the CPRF. By the end of theݎ and ܲ	݀݋ଵ݉ݎ2
formation of ݎଶ in the register RegPR o and ܴଵ, in the register RegR, the clock pulse CP2 arrives at the 
input of the multiplier, by which the contents of the register RegB are shifted by one bit to the left, reduces 
the readings of the counter CCP by one, forms a partial remainder ݎଷ in RegPR and the intermediate 
remainder ݎଷ in RegR, etc. After the filing of the n-1-th clock pulse, the counter CCP generates the “End 
of Operations” signal, which delays on DL.3 for the duration of the ܴ௡ିଵ result generation and is fed to 
the control input of the circuit block And10 and the result of the operations is output. The “End of 
Operations” signal transfers the flip-flop T to the initial zero state and prevents the next clock signal from 
passing through the circuit And1 to the device. The parameters of the clock signals are determined by the 
delay signals on the CMAdd. 

Consider the example of the multiplication of numbers by module. 
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Let A = 25; B = 2210 = 101102 
 

P = 26. For convenience, all calculations are performed in decimal notation, which are shown in table 1. 
 

Table 1 – The order of multiplication of A by B modulo R 
 

Clock pulses ܾ௜ CPRF CMAdd 

Start ܾ଴ ൌ 0 
ܾଵ ൌ 1 

ଵݎ ൌ  24=26 -50 =ܲ݀݋଴݉ݎ2
ܴ଴ ൌ 0 
ܴଵ ൌ ሺܴ଴ ൅  ଵሻmod26=24ݎ

CP1 ܾଶ ൌ ଶݎ 1 ൌ ଶܴ 22=26-48=ܲ݀݋ଵ݉ݎ2 ൌ ሺܴଵ ൅ ଶሻݎ mod P =24+22=46 mod 26 = 20 

CP2 ܾଷ ൌ ଷݎ 0 ൌ ଷܴ 18-26-44=ܲ݀݋ଶ݉ݎ2 ൌ ሺܴଶ ൅ 0ሻ mod P = 20 

CP3 ܾସ ൌ ସݎ 1 ൌ 2ܴଷ݉10=26-36=ܲ݀݋ ܴସ ൌ ሺܴଷ ൅ ସሻݎ mod P = (20+10)mod 26 = 4 

Checking: ܴ ൌ ሺܣ ∙ ܲ݀݋ሻ݉ܤ ൌ ሺ25 ∙ 22ሻ݉݀݋ 26 ൌ 550 ݀݋݉ 26 ൌ 4. 

 
Matrix scheme of the device for modular multiplication with the analysis of the lower bits of the 

multiplier. Figure 4 shows the block diagram of the matrix multiplier of numbers, where multiplication 
begins with the lower order bits of the multiplier. The multiplier consists of the register of the multiplier 
RegВ, the register of the module RegР, partial remainders former PRF1 ÷ PRFN-1, blocks of logic circuits 
And0 ÷ AndN-1,, modulo adders MAdd1 ÷ MAddN-1, delay line DL.З. The bits of the multiplier register in 
вN-1, вN-2, …, в1, are connected to the inputs of the block of circuits AndN-1, AndN-2, …, And1,, respectively. 
The inverse value of the module Р ̅Рഥ of the register of RegР is connected with the inputs PRF1 ÷ PRFN-2 
and MAdd1 ÷ MAddN-2. The outputs of the PRFi are connected with the inputs Andi and with the inputs of 
the next PRFi+1. The outputs Andi are connected to the inputs of the MAddi. The MAddi inputs are 
connected to the MAddi-1 outputs. The outputs MAddi are connected to the inputs MAddi+1. Signal “+1” is 
fed to the inputs of PRF1 ÷ PRFN-2 and MAdd1 ÷ MAddN-2. 

Consider the operation of the matrix multiplier. The signal "Start", which is fed into the circuit 
through input 1, from input 2 is taken the bits of the module P in the register RegP, through input 3, the 
multiplicand A is taken to the input of the block And0 and with a shift by one bit in the direction of the 
higher  order  bits is taken to input PRF.1, through input 4 the multiplier B is taken to the register RegB. In 
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Figure 4 – Block diagram of the matrix multiplier of the numbers modulo  

(multiplication begins with the analysis of the lower order) 
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addition, the “Start” signal is fed to the input of the delay lines DL and receives from input 5 the signal              
“+ 1”. After receiving the multiplier B in the register RegB, module P in the register RegP and 
multiplicand A to the inputs PRF.1 and AND0 and the signal “+ 1” is fed to the inputs PRF1 ÷ PRFN-1 and 
MAdd1 ÷ MAddN-1. At the output of PRF.1, a partial remainder ݎଵ ൌ  is formed, which is ܲ݀݋݉ܣ2
supplied with a shift by one bit towards the high order bits to the input of PRF2 and without a shift of ݎଵ is 
transmitted to the information inputs of the block of circuits And1, to the control input of which the value 
of bit в1 from register RegB. When ܾଵ ൌ 1, the value of ݎଵ from output And1 is transmitted to the inputs of 
the modulo adder MAdd1, and the second information inputs of which are fed the value ݎ଴ ൌ ܴ଴ ൌ  at ܣ
the output of MAdd1, the intermediate remainder ܴଵ ൌ ሺݎଵ ൅ ܴ଴ሻ	݉ܲ݀݋ which is transmitted to the input 
of MAdd2. 

Similarly, partial remainder ݎଷ, … , ,ேିଶݎ …,ଷܨܴܲ ேିଵ are formed at the outputsݎ , ,ேିଶܨܴܲ  ேିଵܨܴܲ
and intermediate remainder ܴଷ,… , ܴேିଶ, ܴேିଵ. 

At that time, at the PRF2 outputs, a partial remainder ݎଶ ൌ  is formed, which, with a shift of ܲ݀݋ଵ݉ݎ2
one bit to the left towards the higher order bits, is transmitted to the input of the PRF3. Partial remainder ݎଶ  
is simultaneously transmitted to the information inputs of the block  
of circuits And2, and the control input of which is transferred to the value 
of bit в2 from the register RegB. When ܾଶ ൌ 1, the value of r2 is transmitted 
to the input of the adder MAdd2, to the second input of which the value  
ܴଵ is supplied from the output of MAdd1. An intermediate remainder 
ܴଵ ൌ ሺݎଵ ൅ ܴ଴ሻ	݉ܲ݀݋ is formed at the output of MAdd2. 

Similarly, at the outputs ܴܲܨଷ,… , ,ேିଶܨܴܲ  ேିଵ, partial remaindersܨܴܲ
,ଷݎ … , ,ேିଶݎ  ேିଵ are sequentially formed. In parallel, partial remainders atݎ
the outputs of the ݀݀ܣܯଷ, … -ேିଵ adders form interme݀݀ܣܯ,ேିଶ݀݀ܣܯ,
diate remainders ܴଷ,… , ܴேିଶ, ܴேିଵ.The remainder ܴேିଵ is the result of 
multiplying the numbers A and B modulo P. 

Figure 5 shows the structure of the adder modulo MAdd, which 
consists of a binary adder, where the partial remainder ݎ௜ is summed with 
the intermediate remainder ܴ௜ିଵ and this sum is reduced modulo using the 
PRF. 

Add

PRF +1

Ri 

ri  Ri‐1 
Рഥ 

 
 

Figure 5 – Structure of MADD 
 

Table 2 shows the order of execution of multiplication operations modulo the matrix multiplier, 
where A=2710; B=2310=101112; P=3510. For convenience, all arithmetic operations are performed in the 
decimal number system. 
 

Table 2 – Calculation order of the R = (27*23)mod35 
 

PRF4 PRF3 PRF2 PRF1 PRF0 

ସݎ ൌ ଷݎ 12=35݀݋ଷ݉ݎ2 ൌ ଶݎ 6=35݀݋ଶ݉ݎ2 ൌ ଵݎ 3=35-38=35݀݋ଵ݉ݎ2 ൌ  – 19=35-54=35݀݋݉ܣ2

 ଴݀݊ܣ ଵ݀݊ܣ ଶ݀݊ܣ ଷ݀݊ܣ ସ݀݊ܣ

ܾସ ൌ 1 
ସݎ ൌ 12 

ܾଷ ൌ 0 
ଷݎ ൌ 0 

ܾଶ ൌ 1 
ଶݎ ൌ 3

ܾଵ ൌ 1 
ଵݎ ൌ 19 

ܾ଴ ൌ 1 
ܴ଴ ൌ ܣ ൌ 27

MAdd4 MAdd3 MAdd2 MAdd1  

ܴ ൌ ܴସ ൌ ሺܴଶ ൅  ସሻݎ
modP = (12+14)=26 

ܴଶ ൌ ሺܴଶ ൅ ଷሻ modP = 14ݎ ܴଶ ൌ ሺܴଵ ൅ ଶሻ modP = 14 ܴଵݎ ൌ ሺܴ଴ ൅  – ଵሻ modP = 11ݎ

Checking R = (27*23) = 621mod35 = 26. 

 
The magnitude of the delay on the DL determine the longest chain necessary for the formation of the 

result ܴ ൌ ܴேିଵ: PRF1 – And1 – MAdd1 ÷ MAddN-1. Then 
 

߬஽௅ ൌ ߬௉ோி ൅ ߬஺௡ௗ ൅ ܰ െ 1ሺ߬ெ஺ௗௗሻ 
 

where ߬௉ோி  is the delay time on the PRF; ߬И is the delay time of the AND circuit; ߬ெ஺ௗௗ is the delay time 
on MADD. 
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Conclusion. In the proposed modulo multipliers, no precalculations is required; at each stage of the 
formation of the intermediate remainder, the multiplication and reduction operations are combined; All 
calculations do not go beyond the bit grid of the module. 
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КӨБЕЙТКІШТІҢ ТӨМЕНГІ РАЗРЯДТАРЫН ТАЛДАУ АРҚЫЛЫ  
САНДАРДЫ МОДУЛЬ БОЙЫНША КӨБЕЙТУ ҚҰРЫЛҒЫСЫ  

 
Аннотация. Көп таңбалы (үлкен) сандарды модуль бойынша көбейту жолдары қарастырылады. Сан-

дарды көбейту алгоритмі берілген, онда модуль бойынша көбейту үрдісі қадамдарға бөлінеді жəне əр ке-
зеңде, бұрынғы ішінара қалдықтың көбейту əрекеттерін модуль бойынша көбейту нəтижелерін моульге 
келтіру операциясы көмегімен біріктіру арқылы ішінара қалдықтар пайда болады. Көбейткіштің төменгі 
разрядтарын талдаумен сандардың көбейту құрылғысы мен қалдықтардың матрицалық қалыптасуы бар 
схемалық шешімдер қарастырылады. Ұсынылған модуль бойынша көбейту құрылғылары алдын-ала есеп-
теулерді талап етпейді жəне барлық есептеулер модульдің разряд торынан тыс жүрмейді. 

Түйін сөздер: ашық кілттік криптожүйе, аппараттық шифрлау, модульдік көбейту, қалдық құрас-
тырушы. 
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УСТРОЙСТВА УМНОЖЕНИЯ ЧИСЕЛ ПО МОДУЛЮ,  

НАЧИНАЯ С АНАЛИЗА МЛАДШИХ РАЗРЯДОВ МНОЖИТЕЛЯ 
 

Аннотация. Рассматриваются различные способы умножения многоразрядных (больших) чисел по 
модулю. Приводится алгоритм умножения чисел, где процесс умножения по модулю разбиваются на шаги и 
в каждом шаге путем совмещения операций умножения предыдущего частичного остатка на два с операцией 
приведения результатов умножения по модулю формируются частичные остатки. Рассмотрены схемные 
решения умножителей чисел по модулю с анализом младших разрядов множителя с последовательным и 
матричным формированием остатков. В предложенных умножителях по модулю не требуются выполнять 
предвычисления и все вычисления не выходят за разрядной сетки модуля.  

Ключевые слова: криптосистема с открытым ключом, аппаратное шифрование, умножение чисел по 
модулю, формирователь остатков. 
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